Patents Examined by Lana N. Le
  • Patent number: 11309980
    Abstract: A system for synthesizing signal of user equipment and a method thereof are provided. The system includes a physical channel modeler and a physical channel training module. The physical channel modeler receives geo information of a field under test of and a sparse real physical field channel feature to build a physical channel model. The physical channel modeler estimates a plurality of predefined positions of the geo information to obtain a plurality of simulated physical field channel features corresponding to the predefined positions. The physical channel training module receives and performs training on the geo information, the sparse real physical field channel feature and the simulated physical field channel features by using an AI algorithm to perform an inference of a fully real physical field channel feature.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: April 19, 2022
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: En Cheng Liou, Ta-Sung Lee, Chia-Hung Lin, Yu-Chien Lin
  • Patent number: 11296740
    Abstract: An automatic gain controller for a receiver analog frontend is provided. The automatic gain controller sets a plurality of gains for a plurality of analog frontend stages, respectively. The automatic gain controller detects a first signal level at an output of the analog frontend, determines that the first signal level is saturated and sets a first gain of a first analog frontend stage of the plurality of analog frontend stages to a first coarse gain value based on the first signal level. In response to setting the first gain, the automatic gain controller detects a second signal level at the output of the analog frontend, determines whether the second signal level is saturated and on a condition that the second signal level is not saturated, sets the first gain of the first analog frontend stage to a first fine gain value based on the second signal level.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: April 5, 2022
    Assignee: STMicroelectronics International N.V.
    Inventor: Gagan Midha
  • Patent number: 11296670
    Abstract: Impedance matching transceivers may include a tuning circuit to match the transceiver module impedance to the housing conditions. In some examples, the impedance matching is controlled by tuning-circuits that may be integrated into a transceiver module by using a fan-out package (FO PKG). One example of a tuning circuit may include a switch to isolate the parallel capacitors, such that when the switch is on or closed the parallel capacitors are active.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 5, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Milind Shah, Periannan Chidambaram
  • Patent number: 11283534
    Abstract: The interference power estimation apparatus 1 calculates an inter-station vector from an interfering station over a sphere to an interfered station installed in the sphere based on a position of each station. In a case where a line segment connecting the position of the interfered station and the position of the interfering station does not intersect with the sphere, an angle between an antenna direction vector representing a direction of an antenna from the position of the interfered station and the inter-station vector is derived, and a sum of an antenna directivity attenuation amount obtained based on the angle and propagation losses calculated based on a distance between the interfered station and the interfering station is calculated.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 22, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kota Ito, Hideyuki Tsuboi, Yutaka Imaizumi, Yushi Shirato, Naoki Kita
  • Patent number: 11271689
    Abstract: A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 8, 2022
    Assignee: Skywave Networks LLC
    Inventor: Kevin J. Babich
  • Patent number: 11271306
    Abstract: A wiring board includes couplers and external connection terminals including a first terminal group including a first antenna terminal and a first monitor terminal respectively connected to an output terminal and a coupler terminal of a coupler, and a first spacer terminal between the first antenna terminal and the first monitor terminal, and a second terminal group including a second antenna terminal and a second monitor terminal respectively connected to an output terminal and a coupler terminal of a coupler, and a second spacer terminal between the second antenna terminal and the second monitor terminal.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 8, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yukiteru Sugaya
  • Patent number: 11265036
    Abstract: A self-tuning method can be applied to a self-tuning system and a mobile terminal. In the method, an actual performance index value of the self-tuning system in a current use environment is acquired; when it is determined that a difference between the actual performance index value and a preset performance index value in a current use environment is greater than a preset value, the self-tuning system is controlled to perform tuning until the self-tuning system finishes the tuning of all states thereof, so as to obtain a reflection signal corresponding to each of the states; each reflected signal is compared with a radio frequency signal received by the self-tuning system respectively, so as to obtain a comparison result; and a tuning parameter, within a first preset range, corresponding to the comparison result is determined as the tuning parameter of the self-tuning system in the current use environment.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: March 1, 2022
    Assignee: ONEPLUS TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: Jianzhang Hou, Changwen Zhou
  • Patent number: 11265191
    Abstract: An integrated circuit includes a bit slicing circuit with a processing circuit. The processing circuit receives discrete frequency power estimates based on an S-FSK waveform received by an S-FSK receiver associated with the bit slicing circuit. The discrete frequency power estimates are representative of digital logic levels in a series of data frames modulated using S-FSK to form the S-FSK waveform. Each data frame including at least one word. Each word includes bit periods. The processing circuit receives SNR parameters that represent a dynamic SNR for the respective discrete frequency power estimates in relation to the series of data frames. The processing circuit selects a bit slicing technique from a set of available bit slicing techniques to generate data bit values for bit periods of the discrete frequency power estimates based on the SNR parameters. A method for performing bit slicing in an S-FSK receiver is also disclosed.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: March 1, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nikolaus Klemmer, Amneh Mohammed Akour, Abhijit Anant Patki, Timothy Patrick Pauletti, Tarkesh Pande
  • Patent number: 11251828
    Abstract: A network routing device, a network data transmission method, and a network access device. The network routing device's first network transmission processing module is configured to convert a received data signal into at least two baseband signals, send one baseband signal to a first radio frequency unit, and send another baseband signal to a first wired communication module. The first radio frequency unit converts the baseband signal into a radio frequency signal and sends the radio frequency signal by using a first antenna, and the first wired communication module converts the baseband signal into a network signal that can be transmitted in a wired transmission medium and sends the network signal to the wired transmission medium for transmission. According to the network routing device, a signal can be transmitted in both a wired manner and a wireless manner. This improves signal transmission reliability.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 15, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Li Zhang, Jie LV, Yan Zeng
  • Patent number: 11251882
    Abstract: The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as long-term evolution (LTE). The present disclosure provides a device and a method for calibrating a phased array antenna. A method for calibrating a phased array antenna according to various embodiments of the disclosure comprises the processes of: controlling a first radio frequency (RF) chain so as to transmit a first signal at a first phase, thereby determining the phase difference between the first phase and a reference phase; controlling the first RF chain so as to transmit a second signal at a second phase, thereby determining the phase condition of the phase difference; and calibrating the first RF chain on the basis of the phase difference and the phase condition. The reference phase may be the phase of a reference signal transmitted from a reference RF chain.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 15, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Manh-Tuan Dao, Yonghoon Kim, Yuichi Aoki
  • Patent number: 11233583
    Abstract: A human body communication device includes an electrode, a matching circuit, a switch providing a first path electrically connected to the matching circuit and a second path electrically connected to the matching circuit, a sensor, in a first state, connected to the matching circuit through the switch, outputting a first sensing signal to the matching circuit, and outputting a second sensing signal when a difference between a signal generated from the matching circuit in response to the first sensing signal and the first sensing signal is greater than or equal to a threshold, a transmitter, in a second state, connected to the matching circuit through the switch, and outputting a data signal to the matching circuit, and a controller controlling the switch from the first state to the second state in response to receiving the second sensing signal from the sensor, in the first state.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 25, 2022
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sung Eun Kim, Tae Wook Kang, Hyuk Kim, Kwang IL Oh, Kyung Hwan Park, Mi Jeong Park, Hyung-IL Park, Kyung Jin Byun, Jae-Jin Lee, In Gi Lim
  • Patent number: 11228379
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication. One of the methods includes: receiving an RF signal at a signal processing system for training a machine-learning network; providing the RF signal through the machine-learning network; producing an output from the machine-learning network; measuring a distance metric between the signal processing model output and a reference model output; determining modifications to the machine-learning network to reduce the distance metric between the output and the reference model output; and in response to reducing the distance metric to a value that is less than or equal to a threshold value, determining a score of the trained machine-learning network using one or more other RF signals and one or more other corresponding reference model outputs, the score indicating an a performance metric of the trained machine-learning network to perform the desired RF function.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 18, 2022
    Assignee: DeepSig Inc.
    Inventor: Timothy James O'Shea
  • Patent number: 11211959
    Abstract: A wireless receiver (10) includes a down converter module (210) operable to deliver a signal having a signal bandwidth that changes over time, a dynamically controllable filter module (200) having a filter bandwidth and fed by said down converter module (210), and a measurement module (295) operable to at least approximately measure the signal bandwidth, said dynamically controllable filter module (200) responsive to said measurement module (295) to dynamically adjust the filter bandwidth to more nearly match the signal bandwidth as it changes over time, whereby output from said filter module (200) is noise-reduced. Other wireless receivers, electronic circuits, and processes for their operation are disclosed.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: December 28, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Jaiganesh Balakrishnan
  • Patent number: 11211955
    Abstract: Disclosed is a voltage protection circuit for preventing power amplifier burnout in an electronic device. The electronic device includes a power amplifier (PA) configured to amplify a transmission signal, a switch configured to set a path of a signal outputted from the PA, a bias control circuit configured to control the supply of a bias current driving the PA, and a voltage protection circuit configured to provide a main control signal for turning off the PA earlier than turning off the switch based on a battery voltage providing a driving power of the electronic device, and forward the main control signal to the bias control circuit, wherein, in response to receiving the main control signal instructing to turn off the PA from the voltage protection circuit, the bias control unit stops the supply of the bias current driving the PA.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 28, 2021
    Inventors: Hyunseok Choi, Jooseung Kim, Namjun Cho, Hyoseok Na
  • Patent number: 11201958
    Abstract: In accordance with some embodiments, an apparatus and methods for providing alternative communications are provided. The apparatus may include a housing arranged to hold a personal communication device. The apparatus may provide an additional communication path for the personal communication device which was previously not there. In some embodiments, an additional communication mechanism may be provided for a newer telecommunication standard or form of communication. In another embodiment, an added close proximity data communication device may be provided, which enables a personal communication device to perform in close proximity standards that it otherwise may not be able to.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: December 14, 2021
    Assignee: PPIP, LLC
    Inventors: Michael Fong, Neric Hsin-wu Fong, Mohamad Ahmad Foustok
  • Patent number: 11201641
    Abstract: An analog tamper-detection apparatus (ATAMP) for onboard analysis of a target device includes a plurality of antennas, each antenna of the plurality of antennas disposed within the target device and being electrically isolated from components of the target device. The ATAMP device further includes radio frequency (RF) front-end (RFFE) transmitter circuitry coupled to the plurality of antennas, the RFFE transmitter circuitry configured to illuminate the target device with a plurality of electromagnetic signals emitted via the plurality of antennas, to generate a plurality of mixed RF signals. The ATAMP device further includes RFFE receiver circuitry configured to receive emissions from the target device based on the mixed RF signals, and processing circuitry configured to perform subsequent analysis and evaluation of the target device based on the received emissions. The processing circuitry further generates a notification of the subsequent analysis and evaluation.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 14, 2021
    Assignee: Raytheon BBN Technologies Corp.
    Inventors: Tyler Shake, John Dishon, John-Francis Mergen, Zachary Leuschner, Thomas Wilkerson, David Brian Miller, Ronald Buikema
  • Patent number: 11196596
    Abstract: An integrated circuit includes a bit slicing circuit with a processing circuit. The processing circuit receives discrete frequency power estimates based on an S-FSK waveform received by an S-FSK receiver associated with the bit slicing circuit. The discrete frequency power estimates are representative of digital logic levels in a series of data frames modulated using S-FSK to form the S-FSK waveform. Each data frame including at least one word. Each word includes bit periods. The processing circuit receives SNR parameters that represent a dynamic SNR for the respective discrete frequency power estimates in relation to the series of data frames. The processing circuit selects a bit slicing technique from a set of available bit slicing techniques to generate data bit values for bit periods of the discrete frequency power estimates based on the SNR parameters. A method for performing bit slicing in an S-FSK receiver is also disclosed.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: December 7, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nikolaus Klemmer, Amneh Mohammed Akour, Abhijit Anant Patki, Timothy Patrick Pauletti, Tarkesh Pande
  • Patent number: 11184047
    Abstract: Example embodiments relate to methods for adjusting an impedance of a tunable matching network, One embodiment includes a method for adjusting an impedance of a tunable matching network (TMN) connected between an antenna and a transceiver front-end. The TMN includes a receive path to provide signals from the antenna to a receiver during a receive (Rx) mode and a transmit path to provide signals from a transmitter to the antenna during a transmit (Tx) mode. The method includes tuning the TMN. The method also includes measuring values of an output DC-offset at the receiver while tuning the TMN. The output DC-offset is caused by a coupling between the transmitter and the receiver. Further, the method includes determining a maximum value of the output DC-offset from the measured output DC-offset values. Additionally, the method includes adjusting the impedance of the TMN by tuning the TMN to the output DC-offset maximum value.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 23, 2021
    Assignee: Stichting IMEC Nederland
    Inventors: Minyoung Song, Yao-Hong Liu
  • Patent number: 11177988
    Abstract: A receiver circuit is disclosed. The receiver circuit includes an amplifier having an input terminal, where the amplifier is configured to generate an RF signal based on a signal received at the input terminal, where the RF signal includes an information signal and a blocker signal modulating an RF carrier frequency. The receiver circuit also includes a mixer configured to receive the RF signal and to downconvert the RF signal to generate a baseband signal, where the baseband signal includes the information signal and the blocker signal modulating a baseband carrier frequency, where the baseband carrier frequency is less than the RF carrier frequency, and where the mixer is further configured to selectively attenuate the blocker signal.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 16, 2021
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Mohamed Aboudina, Ahmed Emira, Esmail Babakrpur Nalousi
  • Patent number: 11177820
    Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Albert Molina, Martin Clara, Matteo Camponeschi, Christian Lindholm, Kameran Azadet