Abstract: The present disclosure relates to a bimetal-conductive polymer Janus composite nanostructure having electrical stimulation responsiveness, a colloidal self-assembled structure thereof, a preparation method thereof and biosensing, bioimaging, drug delivery and industrial application using the same.
Type:
Grant
Filed:
August 9, 2017
Date of Patent:
February 27, 2024
Assignee:
Industry-University Cooperation Foundation Hanyang University Erica Campus
Abstract: The invention provides compounds suitable for use as contrast agents in magnetic resonance imaging (MRI). The compounds of the present invention are manganese (II) complexes having advantageous properties as compared with similar known compounds.
Type:
Grant
Filed:
June 20, 2017
Date of Patent:
January 30, 2024
Assignee:
GE HEALTHCARE AS
Inventors:
Andreas Richard Meijer, Mikkel Jacob Thaning, Brian Christopher Bales, Michael James Rishel
Abstract: A system and method for automatic production of astatine-211 labeled molecules is described. The invention represents a significant advantage in the preparation of At-211 radiopharmaceuticals including better reproducibility, reduced production time and increased radiation safety. The invention also enables routine automatic synthesis of radiopharmaceuticals in a clinical setting, in conjunction or at short distance from a cyclotron unit capable of producing the radionuclide.
Abstract: The present invention provides oxygenized nanobubbles and their uses in imaging and cancer treatment when combined with therapeutic drugs and precise ultrasound beam steering.
Abstract: Disclosed is a polymetalloxane including a constituent unit represented by the following general formula (1), which stably exists in a transparent and uniform state in a solution and can form a homogeneous cured film: wherein R1 is an organic group and at least one of R1 is an (R33SiO—) group, R3 is optionally selected from specific groups, R2 is optionally selected from specific groups, when plural R1, R2, and R3 exist, they may be the same or different, M represents a specific metal atom, m is an integer indicating a valence of a metal atom M, and a is an integer of 1 to (m?2).
Abstract: A nanotherapeutic supported by a hierarchical silica composite with dual imaging capability (e.g. fluorescence and magnetic resonance imaging), a method of preparing the nanotherapeutic, and a method of treating cancer. Also disclosed is a method of oxidatively dehydrogenating ethane using a catalytic system supported by a hierarchical silica composite.
Abstract: A compound, or a pharmaceutically acceptable salt thereof, having a structure of: wherein L is a cleavable linker group; X is a cargo moiety-containing group; and R1 and R2 are each independently hydrogen, alkyl, or substituted alkyl; or R1 and R2 together form a boronic ester ring or a substituted boronic ester group.
Type:
Grant
Filed:
July 28, 2017
Date of Patent:
August 29, 2023
Assignee:
University of Pittsburgh—Of the Commonwealth System of Higher Education
Inventors:
Paul E. Floreancig, Alexander Deiters, Ramsey D. Hanna, Yuta R. Naro
Abstract: A method of forming an ocular delivery device includes exposing a solid, shaped cellulose polymer to a solution including an active pharmaceutical ingredient (API) and a solvent capable of solubilizing the API, wherein the polymer absorbs at least a portion of the solution, including the API and solvent. The method may further include removing at least a portion of the absorbed solvent from the polymer by allowing the absorbed solvent to evaporate from the polymer or by drying the polymer. A variety of cellulose polymers may be used, including hydroxypropyl cellulose. A variety of APIs may be used, including Cyclosporine, Tobramycin and Vancomycin. Ocular delivery devices prepared by the methods may be used to treat a variety of eye disorders.
Type:
Grant
Filed:
January 7, 2019
Date of Patent:
August 22, 2023
Assignees:
Bausch Health Americas, Inc., Louisiana State University Agricultural and Mechanical College
Inventors:
Jean Theresa Jacob, Kevin John Halloran, Yuri McKee
Abstract: Described herein are methods and devices that allow the generation of [F-18]triflyl fluoride and other [F-18] sulfonyl fluorides (such as [F-18]tosyl fluoride) in a manner that is suitable for radiosynthesis of F-18 labeled radiopharmaceuticals using currently available synthesis modules.
Abstract: Provided are a method for producing organic material microparticles and a method for modifying organic material microparticles, whereby it becomes possible to improve the crystallinity of organic material microparticles or achieve the crystal transformation of the organic material microparticles while preventing the growth of the organic material microparticles in a solvent. A surfactant is added to a solvent that is capable of partially dissolving organic material microparticles, and then the organic material microparticles are reacted with the solvent. In this manner, it becomes possible to improve the degree of crystallization of the organic material microparticles or achieve the crystal transformation of the organic material microparticles without substantially altering the particle diameters of the organic material microparticles.
Abstract: The present invention relates to pharmaceutical compositions containing one or more compounds of formula 1 wherein R1 is H, C1-6-alkyl, C0-4-alkyl-C3-6-cycloalkyl, C1-6-haloalkyl; R2 is H, C1-6-alkyl; X is an anion selected from the group consisting of chloride or ½ dibenzoyltartrate; j is 1 or 2; and processes for the preparation thereof, and their use to treat diseases connected with the CCR3 receptor.
Abstract: The invention relates to a nicotine oral delivery product containing a powder enclosed in a water insoluble pouch, wherein said pouch is permeable for saliva and therein dissolved parts of the powder, wherein said powder comprising at least a) nicotine selected from the group consisting of tobacco, nicotine salts, nicotine base, stabilized nicotine, and mixtures thereof corresponding to 0.1 to 20 mg nicotine in the form of nicotine base and b) a chewing gum composition and a method of producing said nicotine oral delivery product.
Type:
Grant
Filed:
March 25, 2013
Date of Patent:
February 28, 2023
Inventors:
Frank Svandal, Per Gunnar Nilsson, Robert Ericsson
Abstract: Disclosed herein are water-soluble microneedle spicules for scrubs and a non-aqueous cosmetic composition containing the same. More specifically, the present invention relates to water-soluble microneedle spicules for scrubs, which are in the shape of a triangular pyramid or sexangular pyramid and characterized in that at least any one among the interior angles of the pyramid base of the spicules for scrubs is 90 degrees or less; and a non-aqueous cosmetic composition containing the same.
Abstract: Stable perfluorocarbon nanodroplet compositions with properties such as low-boiling points and small particle diameters are provided for improved performance in ultrasound imaging and therapeutic applications. Methods of producing stabilized nanodroplet compositions and methods of using the compositions are further provided to allow for improved performance in ultrasound imaging techniques and/or therapeutic applications.
Type:
Grant
Filed:
March 16, 2018
Date of Patent:
August 9, 2022
Assignee:
The Board of Regents of The University of Texas System
Inventors:
Caroline de Gracia Lux, Jacques Lux, Alexander M. Vezeridis, Robert F. Mattrey
Abstract: The invention relates to methods of sonodynamic therapy comprising the co-administration of a microbubble-chemotherapeutic agent complex together with a microbubble-sonosensitiser complex. It further relates to pharmaceutical compositions comprising these complexes and their use in methods of sonodynamic therapy and/or sonodynamic diagnosis. Such methods find particular use in the treatment of cancer, e.g. pancreatic cancer.
Type:
Grant
Filed:
November 23, 2016
Date of Patent:
July 12, 2022
Assignee:
University of Ulster
Inventors:
John Callan, Anthony McHale, Eleanor Stride
Abstract: Described herein are hybrid nanoparticles that are exosomes loaded with one or more nanoparticle dendrimers. Also included are pharmaceutical compositions including the hybrid nanoparticles and methods of making the hybrid nanoparticles. Also described is a method of treating a human subject by administering to the human subject the above-described hybrid nanoparticles.
Abstract: Disclosed herein are embodiments of nanoparticle composites that comprise covalently coupled stabilizing agent molecules that improve stability of the nanoparticle composites and allow for tight packing of lipids and/or membranes. The nanoparticle composites can further comprise inhibition inhibitors and/or lipid components that interact to form a hybrid lipid bilayer membrane around the nanoparticle core. The nanoparticle composites can be coupled to drugs, targeting moieties, and imaging moieties. The nanoparticle composites can be used for in vivo drug deliver, disease diagnosis/treatment, and imaging.
Abstract: Disclosed herein are nanoconstructs comprising a nanoparticle, coated with additional agents such as cationic polymers, stabilizers, targeting molecules, labels, oligonucleotides and small molecules. These constructs may be used to deliver compounds to treat solid tumors and to diagnose cancer and other diseases. Further disclosed are methods of making such compounds and use of such compounds to treat or diagnose human disease.
Type:
Grant
Filed:
August 10, 2021
Date of Patent:
April 19, 2022
Assignees:
Oregon Health & Science University, PDX Pharmaceuticals, Inc.
Inventors:
Wassana Yantasee, Worapol Ngamcherdtrakul, Jingga Morry, David Castro, Joe William Gray
Abstract: Nanoparticles having radially-oriented pores are fabricated from a noble metal. The pores have a specific geometrical shape, such as a circle, triangle, hexagon or other polygon. The nanoparticles are administered to a subject to form a nanoparticle-loaded tumor, which is targeted with a radiation beam as part of a radiotherapeutic treatment. The pores redirect photons of the radiation beam to intensify and enhance the dose received by tumor cells, while concomitantly reducing the dose received by surrounding cells and/or tissues. The nanoparticles may be combined with a radiosensitizing drug or agent, administered together or separately, to form a dose-enhancement composition that further intensifies the received dose of radiation at the target.