Patents Examined by Laura Weiner
  • Patent number: 11335952
    Abstract: A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode, wherein the organic electrolytic solution includes a first lithium salt, a second lithium salt, an organic solvent, and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond. The second lithium salt includes at least one selected from LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(FSO2)2N, and LiN(CxF2x+1SO2)(CyF2y+1SO2) where 2?x?20 and 2?y?20.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 17, 2022
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Miyoung Son, Kyoungsoo Kim, Yunhee Kim, Jaehong Kim, Hana Ra, Suyeol Ryu, Myunghwan Jeong, Sunjoo Choi, Myungheui Woo, Seungtae Lee, Harim Lee, Siyoung Cha
  • Patent number: 11329268
    Abstract: A positive electrode, a negative electrode containing lithium, and a nonaqueous electrolyte having lithium ion conductivity are installed. The nonaqueous electrolyte contains a nonaqueous solvent and a solute. The positive electrode contains a positive electrode active material containing at least manganese dioxide, a conductive agent, and a binding agent and further contains an oxide and sulfate of a rare-earth element.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 10, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Miyuki Nakai, Yasuyuki Kusumoto, Yusuke Kawahara, Futoshi Tanigawa, Atsushi Fukui
  • Patent number: 11316198
    Abstract: The present application provides a lithium-ion battery and an apparatus, the lithium-ion battery includes an electrode assembly and an electrolyte. The electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separation film. The positive active material in the positive electrode sheet includes Lix1Coy1M1-y1 O2-z1Qz1, 0.5?x1?1.2, 0.8?y1<1.0, 0?z1?0.1, and M is selected from one of Al, Ti, Zr, Y, and Mg, and Q is selected from one or more of F, Cl, and S. The electrolyte contains an additive A and an additive B, the additive A is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential, and the additive B is an aliphatic dinitrile or polynitrile compound with a relatively high oxidation potential. The lithium-ion battery of the present application has superb cycle performance and storage performance, especially under high-temperature and high-voltage conditions.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: April 26, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Tiancheng Yi, Chunhua Hu, Yao Jiang, Shushi Dou, Chengdu Liang
  • Patent number: 11316203
    Abstract: A secondary battery having high electromotive force and including less lead or being free of lead is provided. The secondary battery includes a positive electrode including a positive electrode active material containing manganese oxide, a negative electrode including a negative electrode active material containing at least one selected from zinc, gallium, and tin, and an electrolytic solution containing at least one selected from phosphoric acid and organic oxoacid and having a pH of less than 7 at 25° C. This secondary battery has an open circuit voltage of more than 1.6 V in a fully charged state.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 26, 2022
    Assignee: NAMICS CORPORATION
    Inventor: Takayuki Fujita
  • Patent number: 11316197
    Abstract: The present application provides a lithium-ion battery and an apparatus, and the lithium-ion battery includes an electrode assembly and an electrolytic solution, the electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separation film. A positive active material of the positive electrode sheet includes Lix1Coy1M1-yO2-z1Qz1, 0.5?x1?1.2, 0.8?y1?1.0, 0?z1?0.1, M is selected from one or more of Al, Ti, Zr, Y, and Mg, and Q is selected from one or more of F, Cl, and S. The electrolytic solution contains vinylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, and an additive A. The additive A is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential. The lithium-ion battery has superb cycle performance and storage performance, especially under high-temperature and high-voltage conditions.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 26, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Tiancheng Yi, Chunhua Hu, Yao Jiang, Shushi Dou, Chengdu Liang
  • Patent number: 11316201
    Abstract: A lithium ion battery that has a 5 V stabilized manganese cathode and a nonaqueous electrolyte comprising a phosphate additive is described. The lithium ion battery operates with a high voltage cathode (i.e. up to about 5 V) and has improved cycling performance at high temperature.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: April 26, 2022
    Assignee: Solvay SA
    Inventors: Charles J. Dubois, Viacheslav A. Petrov, Mark Gerrit Roelofs
  • Patent number: 11296357
    Abstract: An object of the present invention 1 is to provide a non-aqueous electrolyte secondary battery having excellent general performance balance between durability performance and properties, such as a capacity, a resistance, and output characteristics.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 5, 2022
    Assignees: Mitsubishi Chemical Corporation, MU IONIC SOLUTIONS CORPORATION
    Inventors: Eiji Nakazawa, Youichi Oohashi, Atsushi Watarai
  • Patent number: 11289703
    Abstract: Provided is a novel positive electrode active material for a sodium-ion secondary cell having a good discharge capacity. A positive electrode active material for a sodium-ion secondary cell, the positive electrode active material containing, in terms of % by mole of oxide, 8 to 55% Na2O, 10 to 70% NiO, 0 to 60% CrO+FeO+MnO+CoO, and 15 to 70% P2O5+SiO2+B2O3 and containing an amorphous phase.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 29, 2022
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Hideo Yamauchi
  • Patent number: 11276884
    Abstract: Described herein are fluoro-substituted ethers of Formula (I): wherein R1 is a fluoro-substituted C2-C6 alkyl group; R2 is a C2-C6 alkyl group or a fluoro-substituted C2-C6 alkyl group; each R3 independently is H, F, methyl, or fluoro-substituted methyl; and n is 0, 1, 2, 3, or 4. The fluoro-substituted ether compounds are useful as solvents for lithium containing electrolytes in lithium batteries, particularly lithium-sulfur batteries.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 15, 2022
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Zhengcheng Zhang, Chi Cheung Su
  • Patent number: 11276883
    Abstract: The present invention provides a novel electrolyte solution capable of providing electrochemical devices whose internal resistance is less likely to increase even after repeated charge and discharge and whose cycle capacity retention ratio is high. The electrolyte solution of the present invention contains a solvent, an electrolyte salt, and at least one selected from the group consisting of compounds represented by R11X11—SO3M11 and compounds represented by R21R22N—SO3M21 in an amount of 0.001 to 10 mass % relative to the solvent.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: March 15, 2022
    Assignee: DAIKIN INDUSTRIES. LTD.
    Inventors: Atsushi Maruo, Hideo Sakata, Shinichi Kinoshita
  • Patent number: 11271249
    Abstract: This application provides a lithium-ion battery and an apparatus. The lithium-ion battery includes an electrode assembly and an electrolyte. The electrode assembly includes a positive electrode plate, a negative electrode plate, and a separator. A positive active material of the positive electrode plate includes Lix1Coy1M1-y1O2-z1Qz1, where 0.5?x1?1.2, 0.8?y1<1.0, 0?z1?0.1, M is selected from one or more of Al, Ti, Zr, Y, and Mg, and Q is selected from one or more of F, Cl, and S. The electrolyte contains an additive A that is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential. The lithium-ion battery has superb cycle performance and storage performance, especially under high-temperature and high-voltage conditions.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Tiancheng Yi, Chunhua Hu, Shushi Dou, Yao Jiang, Chengdu Liang
  • Patent number: 11264645
    Abstract: A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode. The anode active material includes a metal-based anode active material. The organic electrolytic solution includes a first lithium salt; an organic solvent; and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, wherein both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 1, 2022
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Miyoung Son, Kyoungsoo Kim, Yunhee Kim, Jaehong Kim, Hana Ra, Suyeol Ryu, Myunghwan Jeong, Sunjoo Choi, Myungheui Woo, Seungtae Lee, Harim Lee, Siyoung Cha
  • Patent number: 11264644
    Abstract: A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode. The organic electrolytic solution includes a first lithium salt, a second lithium salt different from the first lithium salt, an organic solvent, and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, wherein both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 1, 2022
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Miyoung Son, Kyoungsoo Kim, Yunhee Kim, Jaehong Kim, Hana Ra, Suyeol Ryu, Myunghwan Jeong, Sunjoo Choi, Myungheui Woo, Seungtae Lee, Harim Lee, Siyoung Cha
  • Patent number: 11264646
    Abstract: The present disclosure relates to the field of energy storage materials, and particularly, to an electrolyte and an electrochemical device. The electrolyte includes an additive A and an additive B, the additive A is selected from a group consisting of multi-cyano six-membered N-heterocyclic compounds represented by Formula I-1, Formula I-2 and Formula I-3, and combinations thereof, and the additive B is at least one halogenated cyclic carbonate compound. The electrochemical device includes the above electrolyte. The electrolyte of the present disclosure can effectively passivate surface activity of the positive electrode material, inhibit oxidation of the electrolyte, and effectively reduce gas production of the battery, while an anode SEI film can be formed to avoid a contact between the anode and the electrode and thus to effectively reduce side reactions.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 1, 2022
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Lu Miao, Chunhua Hu, Tiancheng Yi, Yao Jiang, Chengdu Liang
  • Patent number: 11264613
    Abstract: The present application provides a lithium-ion battery and an apparatus. The lithium-ion battery includes an electrode assembly and an electrolytic solution. The electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separation film. A positive active material in the positive electrode sheet includes Lix1Coy1M1-y1O2-z1Qz1. A negative active material in the negative electrode sheet includes one or more of Si, SiOx2, a Si/C composite material, and a Si alloy. The electrolytic solution contains an additive A and an addictive B, the additive A is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential, and the additive B is a halogen-substituted cyclic carbonate compound. The lithium-ion battery has superb cycle performance and storage performance, especially under high-temperature and high-voltage conditions.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: March 1, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Tiancheng Yi, Chunhua Hu, Shushi Dou, Yao Jiang, Chengdu Liang
  • Patent number: 11258098
    Abstract: Described herein are additives for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high capacity retention during battery cycling at high temperatures. In some embodiments, a high voltage electrolyte includes a base electrolyte and one or more polymer additives, which impart these desirable performance characteristics. The polymer additives can be homopolymers or copolymers.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 22, 2022
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Gang Cheng, Jinhua Huang, Ye Zhu
  • Patent number: 11258099
    Abstract: The present application provides a lithium-ion battery and an apparatus, the lithium-ion battery includes an electrode assembly and an electrolytic solution, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separation film. A positive electrode active material in the positive electrode sheet includes Lix1Coy1M1-y1O2-z1Qz1, and the positive electrode active material is a mixture of large particles Lix1Coy1M1-y1O2-z1Qz1 and small particles Lix1Coy1M1-y1O2-z1Qz1; an average particle size D50 of the large particles Lix1Coy1M1-y1O2-z1Qz1 is 10 ?m-17 ?m, and an average particle size D50 of the small particles Lix1Coy1M1-y1O2-z1Qz1 is 2 ?m-7 ?m. The electrolytic solution contains an additive A that is a polynitrile six-membered nitrogen-heterocyclic compound with a relatively low oxidation potential. The lithium-ion battery has superb cycle performance and storage performance, especially under high-temperature and high-voltage conditions.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 22, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Shushi Dou, Chunhua Hu, Tiancheng Yi, Yao Jiang, Chengdu Liang
  • Patent number: 11251466
    Abstract: A lithium secondary battery includes: a positive electrode; an negative electrode; and an electrolyte between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, the electrolyte includes a lithium salt, a non-aqueous solvent, and a trialkoxyalkylsilane compound represented by Formula 2, and an amount of the trialkoxyalkylsilane compound in the electrolyte is about 0.1 weight percent to about 5 weight percent based on a total weight of the electrolyte: wherein, in Formula 1 and Formula 2, x, y, z, M, A, R1 to R3, and Ar are as defined as the specification.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 15, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Eunha Park, Myongchun Koh, Dongyoung Kim, Insun Park, Yeonji Chung
  • Patent number: 11251432
    Abstract: A lithium battery includes a cathode including a cathode active material; an anode including an anode active material; and an organic electrolytic solution between the cathode and the anode, wherein the anode active material includes natural graphite and artificial graphite, an amount of the artificial graphite being about 50 wt % or more based on a total weight of the anode active material, and the organic electrolytic solution includes: a first lithium salt; an organic solvent; and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: February 15, 2022
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Miyoung Son, Kyoungsoo Kim, Yunhee Kim, Jaehong Kim, Hana Ra, Suyeol Ryu, Myunghwan Jeong, Sunjoo Choi, Myungheui Woo, Seungtae Lee, Harim Lee, Siyoung Cha
  • Patent number: 11239497
    Abstract: This application provides an electrolyte and an electrochemical device, wherein the electrolyte comprises an additive A and an additive B, the additive A is present in an amount of 0.001% to 10% by mass in the electrolyte, and the additive B is present in an amount of 0.1% to 10% by mass in the electrolyte. This application can improve the cycle performance and storage performance of the electrochemical device, especially the cycle performance and storage performance of the electrochemical device under high temperature and high voltage conditions.
    Type: Grant
    Filed: March 30, 2019
    Date of Patent: February 1, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Tiancheng Yi, Chunhua Hu, Lu Miao, Zijun Xu, Chengdu Liang