Patents Examined by Lauren R Colgan
  • Patent number: 10696584
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one contact layer of or including Ag, Ni and Cr. The provision of a contact layer(s) including at least Ag, Ni and Cr, directly over and contacting a silver-based IR reflecting layer, has been found to advantageously increase visible transmission (Tvis) of the low-E coating. Such low-E coating may be used in applications such as monolithic windows, insulated glass (IG) window units, and the like.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 30, 2020
    Assignee: Guardian Europe S.a.r.l.
    Inventors: Anton Dietrich, Bernd Disteldorf
  • Patent number: 10682957
    Abstract: A laminated glass for vehicle with an inner mirror mounted to an opening of a vehicle body includes a laminated glass including a vehicle outside glass plate, and a vehicle inside glass plate bonded to the vehicle outside glass plate via an intermediate film; and an inner mirror mounted to the laminated glass via a mirror base. A plate thickness of the vehicle inside glass plate is less than a plate thickness of the vehicle outside glass plate, and is 1.3 mm or less. The vehicle inside glass plate has a cutout portion in at least a part of an upper edge. The mirror base is mounted to a vehicle interior surface of the vehicle outside glass plate through the cutout portion of the vehicle inside glass plate.
    Type: Grant
    Filed: September 7, 2019
    Date of Patent: June 16, 2020
    Assignee: AGC INC.
    Inventors: Toshimi Yajima, Kiyoshi Nobuoka
  • Patent number: 10683233
    Abstract: A light selective transmission type glass 10 according to the present invention includes: a glass substrate 12; and a light selective transmission layer 11 provided on at least one main surface of the glass substrate 12. The glass substrate 12 has an average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 2.70 ppm/° C. to 3.20 ppm/° C., an average thermal expansion coefficient ?200/300 at 200° C. to 300° C. of 3.45 ppm/° C. to 3.95 ppm/° C., a value ?200/300/?50/100 obtained by dividing the average thermal expansion coefficient ?200/300 at 200° C. to 300° C. by the average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 1.20 to 1.30, and a content of an alkali metal oxide being 0% to 0.1%.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 16, 2020
    Assignee: AGC Inc.
    Inventors: Shuhei Nomura, Kazutaka Ono, Yoshiharu Ooi, Hiroki Hotaka
  • Patent number: 10676986
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including titanium nitride (e.g., TiN) and at least another of the IR reflecting layers is of or including NiCr (e.g., NiCr, NiCrNx, NiCrMo, and/or NiCrMoNx).
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 9, 2020
    Assignee: Guardian Glass, LLC
    Inventors: Patricia Tucker, Philip J. Lingle, Yiwei Lu
  • Patent number: 10670774
    Abstract: There are provided coated articles that include two or more infrared (IR) reflecting layers (e.g., of or including NbZr, Nb, NiCr, NiCrMo, and/or a nitride thereof) sandwiched between at least dielectric layers, and/or a method of making the same. The coating may be designed so that the coated articles realize grey (including black) glass side reflective coloration in combination with a low solar factor (SF) and/or a low solar heat gain coefficient (SHGC). Such coated articles may be used in the context of monolithic windows, insulating glass (IG) window units, laminated windows, and/or other suitable applications, and may optionally be heat treated (e.g., thermally tempered) in certain instances.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 2, 2020
    Assignees: GUARDIAN GLASS, LLC, GUARDIAN EUROPE S.A.R.L.
    Inventors: Philip J. Lingle, Bernd Disteldorf
  • Patent number: 10669193
    Abstract: There are provided coated articles that include two or more infrared (IR) reflecting layers (e.g., of or including NbZr, Nb, NiCr, NiCrMo, and/or a nitride thereof) sandwiched between at least dielectric layers, and/or a method of making the same. The coating may be designed so that the coated articles realize green glass side reflective coloration in combination with a low solar factor (SF) and/or a low solar heat gain coefficient (SHGC). Such coated articles may be used in the context of monolithic windows, insulating glass (IG) window units, laminated windows, and/or other suitable applications, and may optionally be heat treated (e.g., thermally tempered) in certain instances.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 2, 2020
    Assignees: GUARDIAN GLASS, LLC., GUARDIAN EUROPE S.A.R.L.
    Inventors: Bernd Disteldorf, Philip J. Lingle
  • Patent number: 10669191
    Abstract: There are provided coated articles that include two or more infrared (IR) reflecting layers (e.g., of or including NbZr, Nb, NiCr, NiCrMo, and/or a nitride thereof) sandwiched between at least dielectric layers, and/or a method of making the same. The coating may be designed so that the coated articles realize blue glass side reflective coloration in combination with a low glass side visible reflectance, acceptable film side coloration, and low solar factor (SF) and/or a low solar heat gain coefficient (SHGC). Such coated articles may be used in the context of monolithic windows, insulating glass (IG) window units, laminated windows, and/or other suitable applications, and may optionally be heat treated (e.g., thermally tempered) in certain instances.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 2, 2020
    Assignees: GUARDIAN EUROPE S.A.R.L., GUARDIAN GLASS, LLC
    Inventors: Bernd Disteldorf, Philip J. Lingle
  • Patent number: 10662521
    Abstract: A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/?m2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: May 26, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Hironori Hayakawa, Takashi Kuchiyama, Kenji Yamamoto
  • Patent number: 10654749
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 19, 2020
    Assignee: Vitro Flat Glass LLC
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy
  • Patent number: 10654748
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: May 19, 2020
    Assignee: Vitro Flat Glass LLC
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy
  • Patent number: 10654747
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 19, 2020
    Assignee: Vitro Flat Glass LLC
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy, Benjamin Lucci
  • Patent number: 10640418
    Abstract: A low-E coating has good color stability (a low ?E* value) upon heat treatment (HT). Thermal stability may be improved by the provision of an as-deposited crystalline or substantially crystalline layer of or including zinc oxide, doped with at least one dopant (e.g., Sn), immediately under an infrared (IR) reflecting layer of or including silver; and/or by the provision of at least one dielectric layer of or including at least one of: (a) an oxide of silicon and zirconium, (b) an oxide of zirconium, and (c) an oxide of silicon. These have the effect of significantly improving the coating's thermal stability (i.e., lowering the ?E* value). An absorber film may be designed to adjust visible transmission and provide desirable coloration, while maintaining durability and/or thermal stability.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 5, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yongli Xu, Brent Boyce, Salah Boussaad, Philip J. Lingle, Jingyu Lao, Richard Vernhes
  • Patent number: 10629321
    Abstract: A p-type transparent conductive oxide (TCO) mixed metal oxide material layer formed upon a substrate has a formula M1xM2yOz generally, CaxCoyOz more specifically, and Ca3Co4O9 most specifically. Embodiments provide that the p-type TCO mixed metal oxide material may be formed absent an epitaxial crystalline relationship with respect to the substrate while using a sol-gel synthesis method that uses a chelating polymer material and not a block copolymer material.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: April 21, 2020
    Assignee: CORNELL UNIVERSITY
    Inventors: Mahmut Aksit, Richard D. Robinson
  • Patent number: 10626054
    Abstract: A multilayer ceramic substrate that includes a laminate having stacked ceramic layers formed of a ceramic material containing a main component, containing 48 to 75% by weight of Si, 20 to 40% by weight of Ba, and 10 to 40% by weight of Al, and an auxiliary component containing at least 2.5 to 20 parts by weight of Mn with respect to 100 parts by weight of the main component, and in the laminate, glass ceramic layers in which the entire or a portion of the thickness thereof exists within 100 ?m inside of the laminate as measured from opposed principal surfaces are further stacked.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 21, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Tomoki Kato, Sadaaki Sakamoto
  • Patent number: 10618839
    Abstract: A coated article including a substrate and a low emissivity coating. The coated article includes increased TUV and/or actinic transmissivity for use in windows and similar applications.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 14, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Karl William Koch, III
  • Patent number: 10618836
    Abstract: A glass plate includes a first surface provided with a first film; and a second surface provided with a second film and opposite to the first surface. Each of the first film and the second film includes mainly tin oxide and has a sheet resistance value of 20 ?/? or less. When film thicknesses of the first and second films are ?1 nm and ?2 nm respectively, and when, in the glass plate, a haze value measured from the first surface side for a configuration provided with the first film only is H1 (%), and a haze value measured from the second surface side for a configuration provided with the second film only is H2 (%), a value of ?1 divided by H1 is 500 or more but 1200 or less, and a value of ?2 divided by H2 is 300 or more but 750 or less.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: April 14, 2020
    Assignee: AGC Glass Europe
    Inventors: Hideaki Hayashi, Bernard Monville, Koji Ushikubo, Eric Tixhon, Gaetan Di Stefano, Alain Schutz
  • Patent number: 10618837
    Abstract: The invention relates to a rolled up thin glass composite comprising a thin glass film and at least one further layer (10, 11, 20, 30) applied over the surface of one side of the thin glass film, wherein the at least one further layer (10, 11, 20, 30) is applied to a radially outer side of the rolled up thin glass film and the at least one further layer (10, 11, 20, 30) contains a desiccant which protects the thin glass film against stress corrosion cracking.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: April 14, 2020
    Assignee: TESA SE
    Inventors: Christian Schuh, Klaus Keite-Telgenbüscher, Tanita Czeski
  • Patent number: 10605966
    Abstract: A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 ? and about 100 ? RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 ? and about 25 ? to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 ? RMS using a glycol based colloidal solution.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 31, 2020
    Assignee: Corning Incorporated
    Inventors: Joseph Charles Crifasi, Gary Allen Hart, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 10604818
    Abstract: A grain-oriented electrical steel sheet includes a steel layer and an insulation coating arranged in directly contact with the steel layer thereon. The steel layer includes, as a chemical composition, by mass %, 2.9 to 4.0% of Si, 2.0 to 4.0% of Mn, 0 to 0.20% of Sn, and 0 to 0.20% of Sb. In the steel layer, a silicon content and a manganese content expressed in mass % satisfy 1.2%?Si?0.5×Mn?2.0%, and a tin content and an antimony content expressed in mass % satisfy 0.005%?Sn+Sb?0.20%.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: March 31, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyoshi Yashiki, Kenichi Murakami, Nobusato Morishige, Hirotoshi Tada, Yoshiaki Natori
  • Patent number: 10597323
    Abstract: A coated glass pane comprising at least the following layers: a glass substrate and at least one absorbing layer based on at least one metal silicide and/or metal silicide nitride wherein the at least one absorbing layer is embedded between and contacts two layers based on an (oxi)nitride of Si and/or an (oxi)nitride of Al and/or alloys thereof.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 24, 2020
    Assignee: Pilkington Group Limited
    Inventors: John Andrew Ridealgh, John Buckett, John William Oldfield, Rebecca Sheridan