Patents Examined by Lee S. Cohen
  • Patent number: 10675478
    Abstract: This disclosure describes an implantable medical electrical lead and an ICD system utilizing the lead. The lead includes a lead body defining a proximal end and a distal portion, wherein at least a part of the distal portion of the lead body defines an undulating configuration. The lead includes a defibrillation electrode that includes a plurality of defibrillation electrode segments disposed along the undulating configuration spaced apart from one another by a distance. The lead also includes at least one electrode disposed between adjacent sections of the plurality of defibrillation sections. The at least one electrode is configured to deliver a pacing pulse to the heart and/or sense cardiac electrical activity of the heart.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 9, 2020
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Gonzalo Martinez, Vladimir P. Nikolski, Nathan L. Olson, Kevin R. Seifert, Teresa A. Whitman
  • Patent number: 10675088
    Abstract: A method, including selecting a first maximum radiofrequency (RF) power to be delivered by an electrode within a range of 70 W-100 W, and selecting a second maximum RF power to be delivered by the electrode within a range of 20 W-60 W. The method also includes selecting an allowable force on the electrode within a range of 5 g-50 g, selecting a maximum allowable temperature, of tissue to be ablated, within a range of 55° C.-65° C., and selecting an irrigation rate for providing irrigation fluid to the electrode within a range of 8-45 ml/min. The method further includes performing an ablation of tissue using the selected values by initially using the first power, switching to the second power after a predefined time between 3 s and 6 s, and terminating the ablation after a total time for the ablation between 10 s and 20 s.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: June 9, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Assaf Govari, Yaron Ephrath, Andres Claudio Altmann, Israel Zilberman
  • Patent number: 10674926
    Abstract: An electrocardiographic system, the electrocardiographic system includes a first part that includes: a first housing that comprises of a first bottom layer that is elastic and has an underside provided with an adhesive material; a first set of electrodes that is located within the first housing; wherein the first set of electrodes comprises at least one first electrode; a second part that comprises: a second housing that comprises a second bottom layer that has an underside provided with an adhesive material; a second set of electrodes that are located within the second housing; wherein the second set of electrodes comprises at least one second electrode; a mechanical adaptor that is arranged to be detachably connected to a electrocardiographic device that comprises a processor and a wireless transmitter; and an electrical connector that is detachably is arranged to be detachably connected to the electrocardiographic device and to electrically couple the electrocardiographic device to conductors that convey s
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 9, 2020
    Inventors: Yacov Geva, Nir Geva, Yossi Lovton, Benny Tal
  • Patent number: 10653331
    Abstract: An electrode sensor is provided. The electrode sensor can include a conductive sensor area that is at least partially covered by hydrogel. The hydrogel can be conductive and adhere to skin. A receptacle can form an open container surrounding the conductive sensor area and the hydrogel.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: May 19, 2020
    Assignee: Konan Medical USA, Inc.
    Inventor: Charles Wm. Stewart
  • Patent number: 10653329
    Abstract: A neural probe structure, which is fixed to a nerve to acquire an electrical signal from the nerve or apply electrical stimulation to the nerve, includes a body which is bent to enclose at least a part of circumference of the nerve, and a probe which extends longitudinally from the body and passes through the nerve, wherein the probe has electrodes. A neural probe assembly includes the neural probe structure, wherein the probe passes through the nerve and the body encloses at least a part of circumference of the nerve, so that the neural probe structure is fixed to the nerve.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 19, 2020
    Inventors: Sang Rok Oh, Keehoon Kim, Sehyuk Yim, Yong Seok Ihn, Donghyun Hwang
  • Patent number: 10653474
    Abstract: A working surface of the electrode head, designed to be essentially hemispherical in shape, is made of a suitable high-temperature-resistant metal. The electrode head is supplied with power via an electrical connecting line. The rear surface of the electrode head forming the sectional surface of the hemisphere is planar and is covered with an insulating cover made of a ceramic material. The transitional region from the working surface to the rear surface does not have an edge but instead is rounded with a minimum radius of curvature, which is substantially greater than one-thirtieth of the width, which corresponds to the hemisphere diameter (=twice the radius of the hemisphere), which is the dimension of the electrode head in the direction of its maximum extent. The relatively large radius of curvature prevents the main activity of the electrode from occurring at its boundary due to excessively high local current densities.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: May 19, 2020
    Inventor: Christoph Knopf
  • Patent number: 10638977
    Abstract: The invention relates to an electrocardiograph sensor mat (100), the mat (100) comprising a multitude of electrodes (104) for acquiring cardiac signals and a plug (200), wherein the electrodes (104) are connected to the plug (200) by electric wires (102), wherein the wires (102) are segmented by switches (202), wherein the switches (202) are switchable between a closed state and an open state, wherein in the closed state the electrodes (104) are electrically connected to the plug (200) and wherein in the open state the electrodes (104) are electrically isolated from the plug (200).
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: May 5, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Jouke Smink, Steffen Weiss, Sascha Krueger
  • Patent number: 10631747
    Abstract: A measurement patch device may change length according to somatotype of a user, and may be joined with another measurement patch device integrally according to the need of different physiological lead measurement. Moreover, the two joined measurement patch devices may rotate with respect to each other, such that multi-channel or multi-lead physiological signal may be measured to save measurement time of physiological signal.
    Type: Grant
    Filed: January 9, 2016
    Date of Patent: April 28, 2020
    Inventor: Shuenn-Yuh Lee
  • Patent number: 10631748
    Abstract: An extended wear electrocardiography patch with wire interconnects is provided. The patch includes a flexible backing formed of an elongated strip of stretchable material with narrow longitudinal midsection evenly tapering inward from a distal end and a proximal end, the elongated strip adherable only at a contact surface defined on each of the ends; a pair of electrocardiographic electrodes interfaced to one or more of a set of electrode pads, each of the electrodes including an electrically conductive surface only exposed on the contact surface; a battery connected to one or more of the pads of the set via at least one flexile wire interconnect, the battery secured in place via a flexile wire; and the set of electrical contact pads included on the flexible backing and formed by a set of further flexile wires, the set configured to interface the electrodes and the battery with an electrocardiography monitor recorder.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 28, 2020
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 10624547
    Abstract: Devices and systems described herein relate to a sensing device that includes an output area and an electrode area. The output area includes an output circuit comprising an integrator adapted to integrate a received current so as to generate an output voltage corresponding to the received current. The electrode area includes an electrode comprising an exposed, electrically conductive, surface area and electrode circuitry connected to the exposed surface area. The electrode circuitry comprises a voltage-to-current transducer adapted to produce a wire current corresponding to a voltage present at the exposed surface area. The sensing device also includes a connecting wire electrically connecting the electrode circuitry to the output circuit, wherein the current received by the output circuit is the wire current.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 21, 2020
    Assignees: IMEC VZW, Katholieke Univesiteit Leuven, KU LEUVEN R&D
    Inventors: Bogdan Raducanu, Srinjoy Mitra, Refet Firat Yazicioglu
  • Patent number: 10624548
    Abstract: An electrode assembly includes a needle and a conductive thread electrode carried in a slot on the surface of the needle. The needle pushes the thread electrode into the body and leaves it in place when the needle is removed. The needle is secured in a housing in a retracted position and moved to an extended position by a latch. In the extended position, one end of the needle remains in the housing and the other end extends from the housing. The needle is attached to a spring inside the housing and is moved by the latch against the urging of the spring to the extended position and locked in place. A protective cover is applied over the needle while extended and removed to insert the needle into the body of a patient.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: April 21, 2020
    Assignee: Rhythmlink International, LLC
    Inventor: Gerald Keisler
  • Patent number: 10610118
    Abstract: A textile substrate with a measuring sensor for measuring a physiological signal. The textile substrate has integrated irremovably therewith a base structure component for electronics, such as for example a plastic base for a transmitter for attaching the transmitter and other electronics to the substrate irremovably by way of said base structure component. In addition, signal transfer elements from the measuring sensor are adapted to extend in a watertight manner to the electronics through said base structure component integrated irremovably with the textile substrate.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 7, 2020
    Assignee: Clothing Plus MBU Oy
    Inventors: Heikki Jaakkola, Tommi Tuulenmäki, Akseli Reho
  • Patent number: 10610292
    Abstract: The present disclosure relates to devices, systems and methods providing evaluation and feedback to an operator of a device providing neuromodulation treatment, such as modulation of renal nerves of a human patient. In one embodiment, for example, a system monitors parameters or values generated before treatment. Feedback provided to an operator is based on the monitored values and relates to an assessment of various electrical properties associated with an electrode carried by a catheter. The electrode measures an electrical property of biological material making contact with the electrode while deploying the electrode, the electrical property being dependent on a ratio of a wall-interface area to a fluid-interface area.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: April 7, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Vincent Ku, Sowmya Ballakur, Jignesh Shah
  • Patent number: 10610119
    Abstract: A medical device may include a sheath, and an elongate member disposed within a distal portion of the sheath, the elongate member configured to reciprocally move between a sheathed configuration and a deployed configuration. The elongate member may be substantially linear and disposed within the sheath while in the sheathed configuration and extend distally from the sheath in a first direction in the deployed configuration. The elongate member may include a first bend disposed distal to the distal portion of the sheath, the first bend directing the elongate sheath in a second direction that is substantially opposite to the first direction, and a second bend distal to the first bend, the second bend directing the elongate sheath in a third direction substantially transverse to the first and second directions.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 7, 2020
    Inventors: Andrew Grace, Peter Van Der Sluis
  • Patent number: 10602955
    Abstract: A non-invasive and accurate vagina evaluation device and uterine evaluation devices are provided that measure the receptivity (uterine implantation capacity) of the mother's body to a fertilized egg implanting itself into the uterus. A first vagina evaluation device includes: a main body stretchable and expandable after insertion into a vagina, followed by air injection thereinto; four electrodes brought into contact with the vagina wall as the main body expands and stretches; and a fixation device configured to fix the interval of arrangement of the electrodes. Second and third uterine evaluation device include: a flexible and rod-shaped main body for insertion into a uterine cavity; and four or two impedance electrodes arranged with a predetermined interval therebetween in an insertion direction of the main body and brought into contact with an endometrium of the uterine cavity to measure a uterine endometrial impedance generated between the endometrium and each of the electrodes.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: March 31, 2020
    Assignee: Osaka University
    Inventors: Hitomi Nakamura, Tadashi Kimura, Takayoshi Hosono
  • Patent number: 10603484
    Abstract: The disclosure describes devices and systems that include a grounding electrode. In one example, a system may include a first module including a pulse generator within a first housing, a second module comprising a switch matrix within a second housing distinct from the first housing, a connecting cable that connects the first module to the second module, a grounding electrode disposed distal of the first module and proximal of the second module, and a plurality of electrodes disposed distal of the second module, wherein each electrode of the plurality of electrodes are selectively coupled to the pulse generator via the switch matrix. These devices or system can be used to provide neurostimulation and/or neurorecording.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: March 31, 2020
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Egbertus Johannes Maria Bakker, Matthew Finlay, Sébastien Jody Ouchouche, Jeroen Jacob Arnold Tol
  • Patent number: 10602948
    Abstract: A catheter comprising an elongated catheter body, and an electrode assembly distal of the catheter body, the assembly comprising a plurality of spines, wherein each spine has a distal end that is connected to the distal end of at least one other spine, wherein each spine has an electrode-carrying portion, the electrode-carrying portions of all spines of the assembly being in a single common plane, and wherein all spines of the assembly have a uniform exposed total length.
    Type: Grant
    Filed: February 16, 2019
    Date of Patent: March 31, 2020
    Inventors: Steven Wu, Sungwoo Min
  • Patent number: 10602947
    Abstract: Electrode cabling, including a core and n wires coiled on the core in an arrangement topologically equivalent to an n-start thread configuration, wherein n is an integer greater than one. The cabling also includes a sheath covering the n wires and an electrode attached through the sheath to a given wire selected from the n wires.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: March 31, 2020
    Inventors: Assaf Govari, Christopher Thomas Beeckler, Rowan Olund Hettel
  • Patent number: 10595740
    Abstract: A catheter adapted or high density mapping and/or ablation of tissue surface has a distal electrode matrix having a plurality of spines arranged in parallel configuration on which a multitude of electrodes are carried in a grid formation for providing uniformity and predictability in electrode placement on the tissue surface. The matrix can be dragged against the tissue surface upon deflection (and/or release of the deflection) of the catheter. The spines generally maintain their parallel configuration and the multitude of electrodes generally maintain their predetermined relative spacing in the grid formation as the matrix is dragged across the tissue surface in providing very high density mapping signals. The spines may have free distal ends, or distal ends that are joined to form loops for maintaining the spines in parallel configuration.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: March 24, 2020
    Inventors: Ryan Hoitink, Curt R. Eyster, Stuart Williams, Meir Bar-Tal, Shubhayu Basu, Shamim Qutubuddin
  • Patent number: 10595743
    Abstract: A wrist-wearable body composition measuring device includes a main body; a strap connected to the main body; a first input electrode and a first output electrode which are provided on an inner surface of the strap and configured to contact a wrist of a subject; a second input electrode and a second output electrode which are provided on an outer surface of the strap; a measuring unit configured to measure a body impedance of the subject by applying current to the first input electrode and the second input electrode and detecting a voltage generated between the first output electrode and the second output electrode in response to the applied current; and a processor configured to analyze a body composition of the subject based on the body impedance measured by the measuring unit.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 24, 2020
    Inventors: Yeolho Lee, Kak Namkoong, Kunsun Eom, Myounghoon Jung, Seongho Cho