Patents Examined by Lee S. Cohen
  • Patent number: 10292612
    Abstract: An electro-physiology mapping catheter is disclosed which includes an elongated body having opposed proximal and distal end portions and defining a longitudinal axis therebetween, the distal end portion of the body forming a generally circular mapping loop that extends through a plane oriented generally perpendicular to the longitudinal axis of the elongated body, the circular mapping loop having an inwardly bent distal tip section.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 21, 2019
    Assignee: Oscor Inc.
    Inventors: Thomas P. Osypka, Timothy A. Searfoss
  • Patent number: 10293138
    Abstract: A medical device control handle has a first actuation assembly and a second actuation assembly, wherein each assembly has a shaft that is axially aligned but not rotationally coupled with the other shaft. The first actuation assembly includes a first actuation member and a clutch mechanism having a friction disk for generating frictional torque in rendering the first actuation member self-holding. The first actuation member has a cam portion adapted to impart translational motion and rotational motion for disengaging the clutch mechanism upon pivotation of the first actuation member, thus allowing rotation of the first shaft to manipulate a feature of the medical device, for example, deflection. The second actuation assembly includes a second actuation member and a translating member that is responsive to rotation of the second shaft so as to manipulate another feature of the medical device. The second actuation member is also self holding.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 21, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Thomas V. Selkee
  • Patent number: 10292614
    Abstract: A wrist-wearable body composition measuring device includes a main body; a strap connected to the main body; a first input electrode and a first output electrode which are provided on an inner surface of the strap and configured to contact a wrist of a subject; a second input electrode and a second output electrode which are provided on an outer surface of the strap; a measuring unit configured to measure a body impedance of the subject by applying current to the first input electrode and the second input electrode and detecting a voltage generated between the first output electrode and the second output electrode in response to the applied current; and a processor configured to analyze a body composition of the subject based on the body impedance measured by the measuring unit.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 21, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yeolho Lee, Kak Namkoong, Kunsun Eom, Myounghoon Jung, Seongho Cho
  • Patent number: 10285605
    Abstract: In certain embodiments, a neural probe comprises a substrate comprising elongated shanks for penetrating neural tissue, each comprising a proximal end and a distal end; at least one optical source integral to the neural probe for illuminating the neural tissue; and microelectrodes located proximate the distal end of the elongated shanks for monitoring neuronal activity. In certain embodiments, a method of monitoring neuronal activity comprises implanting the neural probe into a test subject such that the elongated shanks protrude into neural tissue of the test subject; illuminating the neural tissue with the at least one optical source; and measuring neuronal activity in response to illuminating the neural tissue. In certain embodiments, a device comprises a semiconductor chip; at least one optical source integral to the semiconductor chip; and sensor elements integral to the semiconductor chip for collecting data responsive to light emitted from the at least one optical source.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: May 14, 2019
    Assignee: DIAGNOSTIC BIOCHIPS, INC.
    Inventors: Brian Jamieson, Jennette Mateo
  • Patent number: 10285756
    Abstract: In various embodiments, a catheter comprising an expandable electrode assembly or basket is provided. In specific embodiments, the basket is particularly useful for mapping electrical activity at one or more locations within the heart. The basket can comprise a plurality of bendable or deflectable arms. At least one of the arms may have varied flexibility over its length in the form of one or more discontinuities of stiffness or flexibility at an elbow region or other variances in flexibility over the arm's length. Such variance in flexibility may allow the arm to assume a different bent configuration or respond to external factors more positively than possible with an arm having a static or near static flexibility or stiffness over its length.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 14, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Sacha C. Hall, Dale E. Just, Alan de la Rama, Cary Hata
  • Patent number: 10285610
    Abstract: This disclosure is directed to a diagnostic catheter having an improved irrigation system for reducing thrombus formation. The catheter may have an irrigated electrode assembly with a plurality of spines, each with a plurality of irrigation ports to flush the device and reduce the risk of thrombus formation.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: May 14, 2019
    Assignee: Biosense Webster (Israel) Ltd.
    Inventor: Steven Wu
  • Patent number: 10285648
    Abstract: The multifunctional, electrophysiological diagnostic catheter for electrocardiologic treatments includes a distal end, diagnostic rings, a balloon, a main channel, a manipulation handgrip, functional connection and internal channels. There is an internally-located open central channel, wherein inlet/outlet of an internal channel is located in the distal ring. There is a pumping channel for pumping up and pumping out of the occlusion-stabilizing balloon located after the diagnostic rings. There is a division of a central channel into two branches in the region of the catheter proximal end.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: May 14, 2019
    Assignee: MEDINICE S.A.
    Inventors: Sebastian Stec, Sanjeev Choudhary
  • Patent number: 10285607
    Abstract: Embodiments of the present disclosure generally relate wearable patches having rigid inserts. The rigid insert is positioned adjacent to one or more connectors, such as studs for receiving sockets to distribute the force transferred to a patient when reconnecting a socket to the stud. The rigid insert may be sized to maintain flexibility in areas of the wearable patch. An optional adhesive layer may be applied to the wearable patch adjacent the rigid insert to reduce the likelihood of delamination of the wearable patch.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 14, 2019
    Assignee: Preventice Technologies, Inc.
    Inventors: Brian Kronstedt, Andrew Arroyo, Charles Rector
  • Patent number: 10278606
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 7, 2019
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy
  • Patent number: 10278603
    Abstract: A system and method for secure physiological data acquisition and storage. An identifier of a physiological monitoring patch is obtained by a programming wand, the patch configured to store the identifier within a cryptographic circuit. A password for accessing physiological monitoring data collected using that patch is generated based on at least a portion of the identifier, the password is encrypted using a secret key, and the encrypted password is loaded into the cryptographic circuit. The key is loaded onto a monitor recorder that couples with the patch and obtains the physiological monitoring data using the patch, wherein the monitor recorder offloads the data together with the identifier and the decoded password. The identifier and the password are reported to a server that stores the offloaded physiological monitoring data using the identifier within a secure database and grants access to the data upon receipt of the decoded password.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 7, 2019
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: 10271756
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms. Additionally, the monitor recorder includes an ECG sensing circuit that measures raw cutaneous electrical signals and performs signal processing prior to outputting the processed signals for sampling and storage.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 30, 2019
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 10271760
    Abstract: A non-invasive and accurate vagina evaluation device and uterine evaluation devices are provided that measure the receptivity (uterine implantation capacity) of the mother's body to a fertilized egg implanting itself into the uterus. A first vagina evaluation device includes: a main body stretchable and expandable after insertion into a vagina, followed by air injection thereinto; four electrodes brought into contact with the vagina wall as the main body expands and stretches; and fixation means configured to fix the interval of arrangement of the electrodes. Second and third uterine evaluation device include: a flexible and rod-shaped main body for insertion into a uterine cavity; and four or two impedance electrodes arranged with a predetermined interval therebetween in an insertion direction of the main body and brought into contact with an endometrium of the uterine cavity to measure a uterine endometrial impedance generated between the endometrium and each of the electrodes.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 30, 2019
    Assignee: Osaka University
    Inventors: Hitomi Nakamura, Tadashi Kimura, Takayoshi Hosono
  • Patent number: 10264991
    Abstract: A device used to establish a contact between a subject and a measuring device using measurement technology, wherein the subject can be a patient. The device has at least one measuring device for connecting to the subject and at least one line to which the measuring device is secured. The line is designed such that the measured variables detected by the measuring device can be conducted to a measuring unit. A mat is connected to the at least one line so as to at least partly form an internal line section.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 23, 2019
    Assignee: SECA AG
    Inventors: Detlef Rhein, Till Garthoff, Julian Brown
  • Patent number: 10264981
    Abstract: A introducer is disclosed that includes an introducer sheath for introducing a catheter into a blood vessel at an insertion point, a plurality of electrodes on the introducer sheath, a flush line coupled to the introducer sheath including a proximal end and a distal end. In addition, the introducer includes an impedance assessment unit coupled to the flush line between the proximal end and the distal end and electrically coupled to the electrodes. The impedance assessment unit is configured to inject a predetermined current or voltage into a first of the plurality of electrodes and measure a resulting voltage or current, respectively, from a second of the plurality of electrodes.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: April 23, 2019
    Assignee: Saranas, Inc.
    Inventors: Christopher Alexander Arevalos, Mehdi Razavi, Matthew DeNardo, Serge Roux, Joe Bailey, Arun Venkatasubramanian
  • Patent number: 10244960
    Abstract: A system for sensing multiple local electric voltages from endocardial surface of a heart, includes: an elongate tubular member having a lumen, a proximal end and a distal end; and a basket assembly including a plurality of flexible splines; an anchor for securably affixing proximal portions of the splines, where the anchor is securably affixed within the lumen of the elongate tubular member at the distal end of the elongate tubular member; and a tip for securably affixing the distal portions of the splines; where the tip is recessed within the basket assembly upon radial expansion of the basket assembly.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: April 2, 2019
    Assignee: Topera, Inc.
    Inventors: Thomas F. Kordis, Ruchir Sehra, Eric T. Johnson, Darrin J. Kent, Robert Ryan Ragland
  • Patent number: 10244959
    Abstract: A vital information measurement device and a vehicle seat which improves the durability of sheet-shaped sensors configured to detect vital information of a seated passenger can stably measure the heart rate of the seated passenger. A vehicle seat includes sheet-shaped sensors attached to a seat back, and can measure the heart rate of a seated passenger based on vital signals of the seated passenger detected by the sheet-shaped sensors. At each sheet-shaped sensor, a sensor overlap reduction section is provided to reduce partial overlapping of the sheet-shaped sensor when the seated passenger leans on the seat back. Specifically, each sheet-shaped sensor includes a first cutout extending toward the center of the sheet-shaped sensor at an outer peripheral portion of the sheet-shaped sensor, and a second cutout formed continuously from the first cutout and extending opposite to the center along the outer peripheral portion of the sheet-shaped sensor.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 2, 2019
    Assignee: TS Tech Co., Ltd.
    Inventor: Shinji Sugiyama
  • Patent number: 10238312
    Abstract: Provided is a wrist-type body component measuring apparatus. The wrist-type body component measuring apparatus includes: a band configured to be worn on a wrist of a user; a first input electrode and a first output electrode disposed on an inside surface of the band and configured to be in contact with the wrist of the user; a second input electrode and a second output electrode disposed on an outside surface of the band; a measuring unit configured to apply a current to the first and second input electrodes and detect a voltage from the first and second output electrodes to measure a body impedance of the user; and an electrode converter configured to convert a disposition of the first and second input electrodes and the first and second output electrodes based on a determination of whether the band is worn on a left wrist or a right wrist of the user.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: March 26, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kunsun Eom, Yeolho Lee, Kak Namkoong, Myounghoon Jung, Seongho Cho
  • Patent number: 10231780
    Abstract: The present invention is directed to a system, a method and a catheter that provide improved ablation capabilities and improved energy efficiency by selectively energizing catheter electrodes on the basis of impedance measurements. In particular, the invention is directed to the selective energization of catheter radial electrodes that together with a tip electrode form a generally continuous tissue contact surface, wherein the selection is made on the basis of impedance measurement as an indication of the amount of tissue contact of each radial electrode.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: March 19, 2019
    Assignee: Biosense Webster, Inc.
    Inventor: Eduardo Jimenez
  • Patent number: 10219714
    Abstract: An electric conductive sensing device includes a front sheet of a sensing pad having several openings. A sensing electrode is a conductive ink electrode aligned with and exposed through each opening. Several first terminals are formed on an insert portion of the sensing pad and are connected to sensing electrodes. Each opening covered by a conductive gel is electrically connected to the corresponding sensing electrode. The insert portion is integrated in a connector. The electric conductive sensing device can be used as electrode patches of ECG devices or electric stimulators. In use, the connector is plugged into the devices to transmit tiny electrical currents to the ECG device from the human skin surface, or to transmit electrical currents generated from the stimulator to the human. The sensing electrodes are formed by conductive ink printing thereby simplifying the manufacturing process and lowering the manufacturing cost compared to conventional soldered structures.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 5, 2019
    Assignee: Wandy Rubber Industrial Co., Ltd.
    Inventor: Janis Yang
  • Patent number: 10219719
    Abstract: A headset for defecting brain electrical activity may include a flexible substrate having first and second ends each configured to engage an ear of a subject and dimensioned to fit across the forehead of a subject. The headset may also include a plurality of electrodes disposed on the substrate and configured to contact the subject when the headset is positioned on the subject. First and second electrodes may contact top center and lower center regions of the forehead, respectively, third and fourth electrodes may contact front right and front left regions of the forehead, respectively, fifth and sixth electrodes may contact right side and left side regions of the forehead, respectively, and electrodes included within the securing devices may contact the ear regions. The third and fourth electrodes may be moveable in at least a vertical direction relative to the other electrodes.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: March 5, 2019
    Assignee: Brainscope Company, Inc.
    Inventors: Lukasz W. Machon, Neil S. Rothman