Patents Examined by Leo B. Tentoni
  • Patent number: 10807290
    Abstract: This invention involves a new and better solution to the problems associated with the premature softening of PLA filaments in the additive manufacturing of three dimensional articles. It is based upon the finding that poly(lactic acid) filaments with high crystallinity offer much better resistance to heat-induced softening. The crystalline poly(lactic acid) filament of this invention can accordingly be used in the additive manufacturing of three dimensional articles without encountering the problems associated with premature softening, such as poor quality and printer jamming. The crystalline poly(lactic acid) filaments of this invention can also be used in additive manufacturing of three dimensional articles without compromising the quality of the ultimate product, reducing printing speed, increasing cost, or leading to increased printer complexity.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: October 20, 2020
    Assignee: JF Polymers (Suzhou) Co. Ltd.
    Inventors: Xiaofan Luo, Zhaokun Pei
  • Patent number: 10801131
    Abstract: Example methods and articles of manufacture related to electrospun aramid nanofibers are provided. One example method may include forming a resultant solution by reacting a solution of aramids dissolved in a solvent with an electrophile. In this regard, the electrophile may perform a side chain substitution on the dissolved aramids. The example method may further include electrospinning the resultant solution to form an aramid nanofiber.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 13, 2020
    Assignee: The Johns Hopkins University
    Inventors: Matthew P. Yeager, Christopher M. Hoffman, Jr., Morgana M. Trexler, Zhiyong Xia
  • Patent number: 10800934
    Abstract: The present invention relates to a suspension comprising 50-95% by weight of the total suspension (w/w) of at least one metallic material and/or ceramic material and/or polymeric material and/or solid carbon containing material; and at least 5% by weight of the total suspension of one or more fatty acids or derivatives thereof. In addition, the invention relates to uses of such suspension in 3D printing processes.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: October 13, 2020
    Assignee: Particle3D AdS
    Inventors: Morten Ostergaard Andersen, Martin Bonde Jensen, Casper Slots
  • Patent number: 10787583
    Abstract: A polymerizable liquid useful for the production of a three-dimensional object comprised of silicone, or a copolymer thereof, which includes at least one constituent selected from the group consisting of (i) a blocked or reactive blocked siloxane-containing prepolymer, (ii) a blocked or reactive blocked siloxane-containing polyisocyanate, and (iii) a blocked or reactive blocked siloxane-containing polyisocyanate chain extender. Methods of using the same in additive manufacturing processes such as continuous liquid interface production are also described.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 29, 2020
    Assignee: Carbon, Inc.
    Inventors: Jessica D. Drazba, Kai Chen, Jason P. Rolland
  • Patent number: 10787013
    Abstract: Provided is a manufacturing method for a printed matter including a medium and a three-dimensional pattern printed on a surface of the medium. The three-dimensional pattern has a partly-coated resin portion and further has layers including a colored layer and clear layers formed on the colored layer. The three-dimensional pattern is formed by stacking the layers formed of inks at least containing resin on one another. One of the clear layers formed on an outermost surface of the three-dimensional pattern is flattened for a longer duration than at least one of the other one of the clear layers and the colored layer that are formed below the clear layer on the outermost surface, so that the one of the clear layers on the outermost surface is further flattened than at least one of the other one of the clear layers and the colored layer.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: September 29, 2020
    Assignee: MIMAKI ENGINEERING CO., LTD.
    Inventor: Junki Kasahara
  • Patent number: 10780500
    Abstract: Provided is a three-dimensional shaped article with relatively high strength and relatively high accuracy. A sintering and shaping method includes: a shaping layer forming process of forming a shaping layer by using a sintering and shaping material in which inorganic particles are included; a process of applying a liquid binding agent, in which a thermoplastic resin and inorganic particles are included, to a desired region of the shaping layer; a process of curing the liquid binding agent, which is applied, to form a shaping cross-sectional layer (shaping portion); a process of removing a region (non-shaping portion) of the shaping layer to which the liquid binding agent is not applied; and a process of heating the shaping cross-sectional layer that is laminated for a sintering treatment.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 22, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Koki Hirata, Shinichi Kato, Hiroshi Fukumoto, Chigusa Sato
  • Patent number: 10780630
    Abstract: The present invention relates to the use of a thermosetting polymeric powder composition in a Selective Laser Sintering process to produce a 3D duroplast, wherein the composition comprises at least one curable polymeric binder material and wherein during each pass of the SLS process said polymeric binder material is at least partially cured within the layer thus formed and also at least partially crosslinked with the previous layer. The invention furthermore relates to a SLS process using such a thermosetting polymeric powder composition and a 3D-printing product obtained when using such a thermosetting polymeric powder composition.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: September 22, 2020
    Assignee: TIGER COATINGS GMBH & CO. KG
    Inventors: Le-Huong Nguyen, Carsten Herzhoff
  • Patent number: 10774447
    Abstract: There is provided a method of making a hollow fiber. The method includes mixing, in a first solvent, a plurality of nanostructures, one or more first polymers, and a fugitive polymer which is dissociable from the nanostructures and the one or more first polymers, to form an inner-volume portion mixture. The method further includes mixing, in a second solvent, one or more second polymers to form an outer-volume portion mixture, and spinning the inner-volume portion mixture and the outer-volume portion mixture to form a precursor fiber. The method further includes heating the precursor fiber to oxidize the precursor fiber and to change a molecular-bond structure of the precursor fiber, and during heating, extracting the fugitive polymer from the inner-volume portion mixture. The method further includes obtaining the hollow fiber with the inner-volume portion having the nanostructures and the first polymers, and with the outer-volume portion having the second polymers.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: September 15, 2020
    Assignee: The Boeing Company
    Inventor: Thomas Karl Tsotsis
  • Patent number: 10774909
    Abstract: A turbine wheel for a hydrokinetic torque converter. The turbine wheel is rotatable about a rotational axis and comprises a substantially annular turbine shell member coaxial with the rotational axis, and a plurality of turbine blade members axially extending from the turbine shell member. The turbine wheel is a single-piece component such that the turbine blade members are unitarily formed with the turbine shell member. The turbine wheel (22) is made by an additive manufacturing process from a polymeric material.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 15, 2020
    Assignee: Valeo Kapec Co., Ltd.
    Inventors: Subramanian Jeyabalan, Alexandre Depraete, Jean-François Bisson, David Salvadori, Adrien Peduzzi
  • Patent number: 10765780
    Abstract: The present invention aims to provide a tissue regeneration substrate excellent in penetrability to cells as well as capable of effectively preventing cell leakage from the tissue regeneration substrate to accelerate tissue regeneration; and a method of producing the tissue regeneration substrate. The present invention relates to a tissue regeneration substrate including: a nonwoven fabric made of a bioabsorbable material, the tissue regeneration substrate having a laminated structure in which a layer containing a nonwoven fabric having an average pore size of 20 to 50 ?m and a layer containing a nonwoven fabric having an average pore size of 5 to 20 ?m are integrated.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: September 8, 2020
    Assignee: GUNZE, LIMITED
    Inventors: Hidetoshi Arimura, Keita Ide
  • Patent number: 10765565
    Abstract: Methods for manufacturing topsheets for absorbent articles are disclosed.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 8, 2020
    Assignee: The Procter & Gamble Company
    Inventors: Arman Ashraf, Kelyn Anne Arora, Misael Omar Aviles, John Lee Hammons, Paul Thomas Weisman
  • Patent number: 10767287
    Abstract: A method of manufacturing multi-ply separable textured yarn, the method comprising, passing a multi-ply separable interlaced filament yarn through a texturizing unit to form a multi-ply separable draw textured yarn, wherein the multi-ply separable interlaced filament yarn is separable in to at least two separable interlaced filament yarn, wherein the interlacing of the filaments within each separable interlaced filament yarn is retained during further processing of the yarn to fabric and in the fabric.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 8, 2020
    Inventor: Ronak Rajendra Gupta
  • Patent number: 10759107
    Abstract: A consumable material for use in an extrusion-based digital manufacturing system, the consumable material comprising a length and a cross-sectional profile of at least a portion of the length that is axially asymmetric. The cross-sectional profile is configured to provide a response time with a non-cylindrical liquefier of the extrusion-based digital manufacturing system that is faster than a response time achievable with a cylindrical filament in a cylindrical liquefier for a same thermally limited, maximum volumetric flow rate.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: September 1, 2020
    Assignee: STRATASYS, INC.
    Inventors: J. Samuel Batchelder, William J. Swanson, S. Scott Crump
  • Patent number: 10760271
    Abstract: This invention is an additively manufactured wall panel using computer aided design (CAD) and computer aided manufacturing (CAM) to design and manufacture multi-colored and multi-layered wall panels. This results in a variety of highly attractive, multi-colored wall panel faces ranging from brick, colored grout lines and multi-colored stones to multi-colored geometric designs. The design and manufacturing process greatly reduces the amount of precast cementitious materials by efficiently using higher quality materials. This reduces cost and weight while simultaneously producing a much more comprehensive, multi-functional wall panel complete with an interior frame, exterior insulation and an air, vapor and moisture barriers.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: September 1, 2020
    Inventor: Kenneth Robert Kreizinger
  • Patent number: 10759112
    Abstract: Disclosed herein is a three-dimensional printing method comprising: applying a build material; applying on, at least, a portion of the build material, a low tint fusing agent composition comprising metal oxide nanoparticles dispersed in a liquid vehicle; and exposing the build material to radiations to fuse the portion of the build material in contact with the low tint fusing agent composition in order to form a layer of a 3D object. Also disclosed herein is an article obtained according to the three-dimensional printing method described herein.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 1, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Stephen G. Rudisill, Alexey S. Kabalnov, Jacob Wright, Hector Jose Lebron
  • Patent number: 10752538
    Abstract: This disclosure describes substrate(s) formed with a three-dimensional (3D) feature thereon, and method(s) of printing the same. One method includes identifying a plurality of locations on a substrate surface where the three-dimensional feature will be formed, determining a height value of the three-dimensional feature at each location, assigning a grayscale value to each location based on the height value, and applying ink to the substrate surface at each location according to the assigned grayscale value.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 25, 2020
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Brian J. Chisholm, Cedric Charretton, Olivier Dangmann, Eva Misfud, Susan L. Smith, Ludovic Valette
  • Patent number: 10751933
    Abstract: The disclosed embodiments provide a system that forms a three-dimensional (3D) nanostructure through 3D printing. During operation, the system performs a 3D printing operation that uses multiple passes of a scanning probe microscope (SPM) tip to deliver an ink to form the 3D nanostructure, wherein the ink includes both a positively charged polyelectrolyte (PE) and a negatively charged PE. While delivering the ink, the SPM tip is loaded with the ink and moved to a target location to deposit the ink. Finally, after the multiple passes are complete, the system cures the 3D nanostructure to remove excess positive or negative charges from the 3D nanostructure.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 25, 2020
    Assignee: The Regents of the University of California
    Inventors: Gang-Yu Liu, Jianli Zhao, Logan A. Swartz
  • Patent number: 10744681
    Abstract: A method for manufacturing bulked continuous carpet filament, the method comprising: (1) reducing a chamber pressure within a chamber to below about 5 millibars; (2) after reducing the chamber pressure to below about 5 millibars, providing a polymer melt to the chamber; (3) separating the polymer melt into at least eight streams; (4) while the at least eight streams of the polymer melt are within the chamber, exposing the at least eight streams of the polymer melt to the chamber pressure of below about 5 millibars; (5) after exposing the at least eight streams of the polymer melt to the chamber pressure of below about 5 millibars, recombining the at least eight streams into a single polymer stream; and (6) forming polymer from the single polymer stream into bulked continuous carpet filament.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 18, 2020
    Assignee: Aladdin Manufacturing Corporation
    Inventor: Thomas R. Clark
  • Patent number: 10737437
    Abstract: A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a “dead zone” where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor causes the film to deform along the build axis, thereby creating a non-planar interface between the photohardednable material and the film. A method is provided to compensate the three-dimensional object data based on the deformation of the film.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: August 11, 2020
    Assignee: Global Filtration Systems
    Inventors: Ali El-Siblani, Mohamad Janbain, Alexander Nam
  • Patent number: 10737344
    Abstract: A method of manufacturing a pallet for use during manufacture of a printed circuit board assembly includes determining optimal solder flow for establishing connections between lead pins of a plurality of pin-through-hole components arranged on a circuit board, designing a pallet to include geometries configured to provide the optimal solder flow when the pallet, supporting the circuit board thereon, is passed through a wave solder machine, and creating the pallet based on the design. Pallets configured for optimal solder flow and methods of manufacturing printed circuit board assemblies using such pallet are also provided.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: August 11, 2020
    Assignee: FLEX LTD.
    Inventors: Zohair Mehkri, Anwar Mohammed, Jesus Tan, David Geiger, Murad Kurwa