Patents Examined by Leon B. Lankford
  • Patent number: 7271147
    Abstract: By culturing Lysobacter sp. BMK333-48F3 (deposit number of FERM BP-7477), an antibiotic, tripropeptin Z, tripropeptin A, tripropeptin B, tripropeptin C or tripropeptin D represented by the general formula (I): wherein R is 7-methyl-octyl group, 8-methyl-nonyl group, 9-methyl-dodecyl group, 10-methyl-undecyl group or 11-methyl-dodecyl group, is obtained as antibiotics having excellent antibacterial activities against bacteria and having a novel molecular structure. These tripropeptins each have an excellent antibacterial activity against various bacteria and drug-resistant strains thereof, such as methicillin-resistant strains and vancomycin-resistant strains.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: September 18, 2007
    Assignee: Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai
    Inventors: Tomio Takeuchi, Hideki Hashizume, Masayuki Igarashi, Hiroshi Naganawa, Masa Hamada
  • Patent number: 7271198
    Abstract: A method of treating an autoimmune disease comprising administering to the subject a treatment effective amount of a histone hyperacetylating agent, or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: September 18, 2007
    Assignee: Wake Forest University
    Inventors: Gary M. Kammer, Nilamadhab Mishra
  • Patent number: 7262023
    Abstract: A novel method of synthesis for the manufacture of upstream products for the production of compounds with general formulas 8, 10, and 12 is described. In this synthesis, compounds with general formula 4,B are produced in a microbiological reaction.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: August 28, 2007
    Assignee: Bayer Schering Pharma AG
    Inventors: Ludwig Zorn, Rolf Bohlmann, Norbert Gallus, Hermann Kuenzer, Hans-Peter Muhn, Reinhard Nubbemeyer
  • Patent number: 7262151
    Abstract: Lipo-chito oligosaccharides (LCOs) are produced by culturing rhizobacteria cells in or on a culture medium comprising at least one of: jasmonic acid or a derivative thereof; linoleic acid or a derivative thereof; or linolenic acid or a derivative thereof. Preferably, the rhizobacteria cells are Bradyrhizobium japonicum cells having the identifying characteristics of B. japonicum strain USDA 3. Preferably, the derivative of jasmonic acid is an ester thereof, preferably methyl jasmonate. Also provided are methods for improving LCO production at low temperatures, particularly temperatures below 25° C.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: August 28, 2007
    Assignee: McGill University
    Inventors: Donald L. Smith, Fazli Mabood, Hao Zhang
  • Patent number: 7256040
    Abstract: The invention concerns an apparatus for preparing monolayers of cells. The apparatus comprises a container (6) for a cryosubstitution system and an insert (1) for the container, the insert (1) having a surface (1a) and a plurality of orifices (3). An SCS (2) together with a cellular monolayer (20) is insertable into each of the orifices (3). The SCS (2) is thus arranged perpendicular to the surface (1a) of the insert (1).
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: August 14, 2007
    Assignee: Leica Mikrosysteme GmbH
    Inventor: Heinz Horstmann
  • Patent number: 7252928
    Abstract: Methods for reducing surface adsorption of biological materials to the walls of microfluidic conduits in microscale devices are provided. In an example of the methods, one or more colloidal-size particles, such as colloidal silica particles, are flowed in a fluid within the microfluidic conduit in the presence of one or more adherent biological materials (such as one or more proteins, cells, carbohydrates, nucleic acids, lipids and the like) to adsorb to the materials and prevent them from binding to the capillary walls of the microfluidic conduit. Other adsorption inhibition agents such as detergents and nonaqueous solvents can be used alone or in combination with colloidal particles to reduce surface adsorption in microfluidic conduits.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: August 7, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Dean G. Hafeman, Aileen Zhou
  • Patent number: 7253206
    Abstract: The present invention provides novel phenalenone derivatives of formula (I) which are formed by the microorganism Penicillium herquei Bainer & Sartory, DSM 14142, during fermentation.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: August 7, 2007
    Assignee: Sanofi-Aventis Deutschland GmbH
    Inventors: Laszlo Vertesy, Michael Kurz, Ziyu Li, Luigi Toti
  • Patent number: 7250162
    Abstract: The present invention relates to novel bacteria inhibiting halitosis or oral malodor. In particular, the present invention relates to novel lactic acid bacteria belonging to the genus Weissella, which can inhibit the proliferation of anaerobic bacteria producing volatile sulfur compounds by interacting with them and generating hydrogen peroxide under aerobic and anaerobic conditions. These lactic acid bacteria of the present invention are isolated from lactic acid bacteria naturally existing in the oral cavity of a person, and identified and deposited as Weissella cibaria CMU (Accession No.: KCTC 10650BP), Weissella cibaria CMS-1 (Accession No.: KCTC 10678BP), Weissella cibaria CMS-2 (Accession No.: KCTC 10679BP) and Weissella cibaria CMS-3 (Accession No.: KCTC 10680BP), respectively.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: July 31, 2007
    Assignee: Industry Foundation of Chonnam National University
    Inventor: Jong Suk Oh
  • Patent number: 7247478
    Abstract: The invention relates to new keratinocytes which may be cultured in vitro and the advantageous use thereof for preparing a product which can be used to treat acute and chronic wounds.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: July 24, 2007
    Assignee: Boehringer Ingelheim Pharma GmbH & Co. KG
    Inventors: Petra Eberhardt, Wolfgang Noé, Katharina Reif
  • Patent number: 7247609
    Abstract: Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: July 24, 2007
    Assignees: Universitat Zurich, Eidgenossische Technische Hochschule Zurich
    Inventors: Matthias Lütolf, Jason Schense, Jeffrey A. Hubbell, Anna Jen
  • Patent number: 7247484
    Abstract: A reagent system is provided for substantially lysing red blood cells in a whole blood sample prior to leukocyte analysis, which system includes a first reagent for substantially lysing the red blood cells in the whole blood sample, and a second reagent for quenching the activity of the first reagent. The first reagent is formulated to include an autoclaved saponin compound and an acid selected from the group consisting of a halogenated carboxylic acid, a phosphoric acid and a combination thereof. The second reagent includes a base and has a pH value of about 8 to 12. Also provided is a method of lysing the red blood cells and stabilizing white blood cells present in a sample of whole blood.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: July 24, 2007
    Assignee: Streck, Inc.
    Inventors: Jiong Wu, Wayne L. Ryan
  • Patent number: 7244424
    Abstract: The strain of micro-organism Lactobacillus fermentum ME-3 is a novel anti-microbial and anti-oxidative probiotic. It has a high anti-microbial effect on Escherichia coli, Shigella sonnei, Staphylococcus aureus, Salmonella typhimurium, and moderate activity against Helicobacter pylori strains. The strain of micro-organism possesses Mn-superoxide dismutase and both its lysates and intact cells have high anti-oxidative activity, increasing the glutathione red-ox ratio in blood sera and able to capture toxic hydroxyl radicals. The strain of micro-organism could be used as a probiotic for the production of functional food (yoghurt, cheese) and non-comestibles (tablets, capsules) for the prophylaxis of intestinal and uroinfections, both for the prevention and treatment of chronic diseases, caused by prolonged oxidative stress.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: July 17, 2007
    Assignee: University of Tartu
    Inventors: Marika Mikelsaar, Mihkel Zilmer, Tiiu Kullisaaar, Heidi Annuk, Epp Songisepp
  • Patent number: 7244552
    Abstract: Artificial dermis (1) obtained from plasma with platelets (2) and human fibroblasts. The plasma with platelets (2) is obtained from the fractionating of total blood (4) from the patient (8) by light centrifugation, and the human fibroblasts (3) from a skin biopsy (5). Clotting is obtained by adding calcium. This artificial dermis (1) provides for the rapid growth of the keratinocytes (6) seeded on its surface to build an artificial skin (7) which can easily be transplanted. Large areas of artificial dermis (1) are obtained from a small skin biopsy (5) and minimal quantities of plasma with platelets (2), which being enriched with cytokines and platelet growth factors, strengthens the proliferation of the cells seeded, both inside and on the surface. The artificial skin (7) obtained can be used to treat major burn treatments, chronic skin ulcers, etc., or be used, by employing genetically altered cells, as a vehicle for gene therapy.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 17, 2007
    Assignees: Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (C.I.E.M.A.T.), Centro Comunitario de Transfusión de Asturias-Cruz Roja Espanola, Fundación Marcelino Botin
    Inventors: Jose Luis Jorcano Noval, Fernando Larcher Laguzzi, Alvaro Meana Infiesta, Sara Gomez Llanes, Marcela Del Rio Nechaevsky
  • Patent number: 7244232
    Abstract: A process for identifying and treating cells in a living organism. The cells are labeled, circulated within the organism, detected with an implanted detector, and then either isolated or ablated.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: July 17, 2007
    Assignee: Biomed Solutions, LLC
    Inventors: Patrick R. Connelly, Thomas H. Foster, Michael L. Weiner, Andrew W. Custer
  • Patent number: 7241743
    Abstract: This invention provides methods for treating and for inhibiting the onset of cancer in a subject comprising administering an agent that inhibits the ability of Sir2? to inhibit p53-dependent apoptosis. This invention also provides a related method for inducing the death of a cell. This invention further provides a method for decreasing the amount of damage to a subject's cells caused by physical stress comprising administering agent that increases the amount of Sir2? in the subject's cells and/or the ability of Sir2? to inhibit p53-dependent apoptosis in the subject's cells. This invention further provides related methods for prolonging the life-span of a subject, decreasing the amount of damage to a cell caused by physical stress, and prolonging the life-span of a cell. Finally, this invention provides two articles of manufacture for performing the instant methods.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: July 10, 2007
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Wei Gu, Jian Yuan Luo
  • Patent number: 7241612
    Abstract: A biopesticidal composition for controlling insects (e.g., pecan weevils, the diaprepes root weevil, fall armyworm, fire ants), containing an agriculturally acceptable carrier and an effective insect (e.g., pecan weevils, the diaprepes root weevil, fall armyworm, fire ants) biopesticidal amount of a fungus selected from the group consisting of Beauveria bassiana having the identifying characteristics of Beauveria bassiana NRRL 30593, Metarhizium anisopliae having the identifying characteristics of Metarhizium anisopliae NRRL 30594, Beauveria bassiana having the identifying characteristics of Beauveria bassiana NRRL 30601, Beauveria bassiana having the identifying characteristics of Beauveria bassiana NRRL 30600, or mixtures thereof. Also, a method for controlling insects (e.g., pecan weevils, the diaprepes root weevil, fall armyworm, fire ants), involving applying an effective insect biopesticidal amount of the composition to the insects or to the plants, areas or substrates infested with the insects.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: July 10, 2007
    Assignee: The United States of America, as Represented by the Secretary of Agriculture
    Inventors: David I. Shapiro-Ilan, Wayne A. Gardner, Bruce Wood, James R. Fuxa
  • Patent number: 7241905
    Abstract: The present invention provides a novel dioxin analogue for use in the search for organisms capable of degrading dioxin.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: July 10, 2007
    Assignee: Forestry and Forest Products Research Institute
    Inventors: Masaya Nakamura, Shojiro Hishiyama
  • Patent number: 7241588
    Abstract: The present invention provides a method for producing a novel ?-lactam antibiotic from a protoplast fusion strain. The method is to fermentatively culture the protoplast fusion strain of Penicillium chrysogenum and Cephalosporium acremonium. The ferment filtrate is isolated, lyophilized, and extracted by acetone or acetone/methanol. The extract is concentrated by decompression, and then analyzed by preparation type HPLC to isolate the active antibiotic compound.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 10, 2007
    Assignee: Grape King Inc.
    Inventors: Chin-Chu Chen, Ying-Shih Feng, Charng-Cherng Chyau, Ching-Nung Chen, Shih-Jeng Huang, Yen-Lien Chen, Hung-Ping Tseng, Wei-Hui Chung, Yi-Hsuan Chen
  • Patent number: 7238504
    Abstract: Provided is a process for preparing an immobilized enzyme, which comprises the steps of immobilizing an enzyme used for decomposing oil & fat on a carrier, by adsorption, without drying, bringing the immobilized enzyme into contact with a fatty acid triglyceride or fatty acid partial glyceride, or mixtures thereof, and adjusting the moisture content of the enzyme to 5% to 50% by weight based on the weight of the carrier, wherein the enzyme is used for esterification.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 3, 2007
    Assignee: Kao Corporation
    Inventors: Manabu Sato, Masami Shimizu, Minoru Kase, Takaaki Watanabe, Jun Kohori
  • Patent number: 7232576
    Abstract: A lozenge for the treatment of Streptococcus Group A infections of the mouth, throat, and nasal passage is disclosed which comprises a lytic enzyme composition specific for Streptococcus Group A and a lozenge carrier for delivering the lytic enzyme.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: June 19, 2007
    Assignees: New Horizons Diagnostics Corp, Rockefeller University
    Inventors: Vincent Fischetti, Lawrence Loomis