Patents Examined by Leon Nigohosian
  • Patent number: 5041158
    Abstract: Powdered metal parts, especitally valve parts of an internal combustion engine which are subject to adhesive wear in service, withstand such wear substantially better when they have substantially uniformly dispersed through them from about 0.75% to about 7.0% by weight of hydrate magnesium silicate (talc).
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: August 20, 1991
    Assignee: Eaton Corporation
    Inventor: Jay M. Larson
  • Patent number: 5039633
    Abstract: Reactive ceramic-metal compositions are described that include a ceramic phase of at least 70 percent by volume, 95 percent of theoretical density and a metal phase that retains its chemical reactivity with the ceramic phase after the composition has been fully densified. The composition may be heat treated after densification to form additional ceramic phases in a controllable manner. Preferred ceramic metal compositions wherein the metal and ceramic components retain reactivity after densification include boron carbide ceramic and Al or Mg metals. The process employed in forming said compositions requires first forming a sintered porous body of the ceramic material followed by contacting with the metal component, which may be in chip or solid bar form. The system is then heated to the melting point of the metal and a pressure of at least 200 MPa is employed such that the porous body is filled with metal and the composition is substantially fully densified.
    Type: Grant
    Filed: September 14, 1989
    Date of Patent: August 13, 1991
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Robert T. Nilsson
  • Patent number: 5035957
    Abstract: Disclosed are coated metal articles having protective coatings which are applied to substrate metals by coating the metal surface, e.g. by dipping the substrate metal in a molten alloy of the coating metals, and then exposing the coating at an elevated temperature to an atmosphere containing a reactive gaseous species which forms an oxide, a nitride, a carbide, a boride or a silicide. The coating material is a mixture of the metals M.sub.1 and M.sub.2, M.sub.1 being zirconium and/or titanium, which forms a stable oxide, nitride, carbide, boride or silicide under the prevailing conditions. The metal M.sub.2 does not form a stable oxide, nitride, carbide, boride or silicide. M.sub.2 serves to bond the oxide, etc. of M.sub.1 to the substrate metal. Mixtures of M.sub.1 and/or M.sub.2 metals may be employed. Eutectic alloys of M.sub.1 and M.sub.2 which melt substantially lower than the melting point of the substrate metal are preferred.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: July 30, 1991
    Assignee: SRI International
    Inventors: Robert W. Bartlett, Paul J. Jorgensen, Ibrahim M. Allam, David J. Rowcliffe
  • Patent number: 5033939
    Abstract: Shaped parts are formed from a powder having the desired chemistry of the finished part by mixing the powder with a thermosetting condensation resin that acts as a binder. The resin may be partially catalyzed, or additives or surfactants added to improve rheology, mixing properties, or processing time. Upon heating, the inherently low viscosity mixture will solidify without pressure being applied to it. A rigid form is produced which is capable of being ejected from a mold. Pre-sintered shapes or parts are made by injection molding, by using semi-permanent tooling, or by prototyping. Binder removal is accomplished by thermal means and without a separate debinding step, despite the known heat resistance of thermosetting resins. Removal is due to the film forming characteristic of the binder leaving open the part's pores, by providing oxidizing conditions within the part's pores as the part is heated, and by insuring that the evolving resin vapor diffuses through the pores by heating the part in a vacuum.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: July 23, 1991
    Assignee: Megamet Industries
    Inventor: Gregory M. Brasel
  • Patent number: 5034053
    Abstract: A hard sintered compact for tools is a sintered compact obtained by super-high pressure sintering of 45-75% by vol. of cubic boron nitride powder and the remaining proportion of binder powder. The binder includes 5-25% by wt. of Al and the remaining proportion of at least one species of compounds represented by (Hf.sub.1-z M.sub.z) C, where M denotes elements of IVa, Va and VIa groups in a periodic table except for Hf, and 0.ltoreq.z.ltoreq.0.3 is satisfied. Because of this composition, improvements are made in strength, wear resistance and heat resisting property of the binder, and a hard sintered compact for tools having excellent strength and excellent wear resistance can be obtained.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: July 23, 1991
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuo Nakai, Mitsuhiro Goto
  • Patent number: 5024902
    Abstract: A fiber-reinforced metal comprising glass fibers and a matrix metal, said glass fibers having a nitrogen content of at least 8 atomic %. The fiber-reinforced metal has a high tensile strength and elasticity.
    Type: Grant
    Filed: June 15, 1990
    Date of Patent: June 18, 1991
    Assignee: Shimadzu Corporation
    Inventors: Katsuaki Suganuma, Hiroyuki Fujii, Hiroyoshi Minakuchi, Katsuhiko Kada, Haruo Osafune, Kuniaki Kanamaru
  • Patent number: 5022919
    Abstract: A complex boride cermet having high strength and high toughness, which comprises a hard phase composed mainly of a boride of (Mo.sub.1-x W.sub.x).sub.2 NiB.sub.2 formed by substituting a part of Mo of Mo.sub.2 NiB.sub.2 by W, and a matrix alloy phase composed mainly of Ni and containing Mo, and a complex boride cermet comprising a hard phase composed mainly of Mo.sub.2 NiB.sub.2 or (Mo.sub.1-x W.sub.x).sub.2 NiB.sub.2 and a matrix of an alloy phase composed mainly of Ni and containing Mo, which is characterized in that carbon or/and nitrogen, and optionally at least one metal selected from the metals of Groups 4B and 5B and Cr, are incorporated to further improve the strength and toughness. Such complex boride cermet has high strength and high toughness and maintains such properties even at elevated temperatures of from 600.degree. to 900.degree. C.
    Type: Grant
    Filed: May 16, 1989
    Date of Patent: June 11, 1991
    Assignee: Asahi Glass Company Ltd.
    Inventors: Yasuo Shinozaki, Noritoshi Horie, Kazuo Hamashima, Makoto Imakawa
  • Patent number: 5022918
    Abstract: A heat-resistant aluminum alloy sinter comprises 5 to 12% by weight of Cr, less than 10% by weight of at least one selected from the group consisting of Co, Ni, Mn, Zr, V, Ce, Fe, Ti, Mo, La, Nb, Y and Hf, and the balance of Al containing unavoidable impurities. A silicon carbide fiber is included for reinforcing the sinter in a fiber volume fraction range of 2 to 30%.
    Type: Grant
    Filed: December 1, 1988
    Date of Patent: June 11, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seiichi Koike, Hiroyuki Horimura, Masao Ichikawa, Noriaki Matsumoto
  • Patent number: 5022803
    Abstract: A method for joining carbon-carbon structural elements together using a carbon-carbon pin type fastener for transfer of shear loads. A coating of powdered metal which undergoes a large expansion when reacted in the presence of a gas is used to coat the outer surfaces of a pin which extends through the structural elements to be joined, with the powdered metal coating between the body of the pin and the surfaces of the structural elements through which the pin passes. After installation through the structural elements the pin is heated in an oxygen atmosphere causing the powdered metal coating to expand up to 100% from its unheated volume binding the pin to the structural elements. A fluted or scalloped edge on the pin increases the surface area of the pin increasing its friction holding force.
    Type: Grant
    Filed: May 25, 1990
    Date of Patent: June 11, 1991
    Assignee: General Dynamics Corporation, Convair Division
    Inventor: Kurt W. Swanson
  • Patent number: 5013611
    Abstract: A camshaft having a tubular steel shaft and a sintered cam piece joined to the shaft. The sintered cam piece has iron tetroxide film at its surface. The camshaft is produced by assembling a powder compact to the steel shaft to provide a camshaft assembly, sintering the assembly to provide an integral assembly, correcting bending to the assembly, annealing the assembly, grinding the cam piece and effecting vaporization treatment to the assembly at a temperature lower than the annealing temperature.
    Type: Grant
    Filed: January 18, 1990
    Date of Patent: May 7, 1991
    Assignee: Nippon Piston Ring Co., Ltd.
    Inventors: Yasuo Suzuki, Shunsuke Takeguchi
  • Patent number: 5011529
    Abstract: A cured sintered porous metal structure comprising aluminum and aluminum alloys is presented comprising an aluminum oxide durable surface integral to the structure. The surface layer is enhanced in aluminum while the underlying structure is thereby depleted in aluminum. The structure exhibits surface and interfacial durability.
    Type: Grant
    Filed: March 14, 1989
    Date of Patent: April 30, 1991
    Assignee: Corning Incorporated
    Inventors: Kathryn E. Hogue, Srinivas H. Swaroop, Raja R. Wusirika
  • Patent number: 5009842
    Abstract: High strength steel parts or articles are made from a powder alloy by compacting the powder into a preform, sintering the preform in a sintering furnace or the like under a highly-reducing atmosphere and at a temperature of at least 1150.degree. C., cooling the preform, preheating the sintered preform in a highly-reducing atmosphere, such as an inert gas-based atmosphere containing hydrogen or pure hydrogen, to a temperature of at least 1000.degree. C. and transferring the preheated preform to an impact forging device and impacting the preform at a peak averaging forging pressure of at least about 1000 MPa to obtain a forged part or article. The time period between removal of the preheated preform from the preheater and the first forging impact is no more than about 8 seconds. The sintering and preheating steps can be combined with the sintered preform being cooled to the preheating temperature in the sintering furnace and transferred directly from the sintering furnace to the impact forging device.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: April 23, 1991
    Assignee: Board of Control of Michigan Technological University
    Inventors: Alfred A. Hendrickson, Darrell W. Smith
  • Patent number: 5009841
    Abstract: A process for dewaxing injection molded metal pieces consisting of a metal/binder mixture, wherein a metal oxide is added to the metal/binder mixture.
    Type: Grant
    Filed: April 12, 1990
    Date of Patent: April 23, 1991
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Bloemacher, Reinhold Schlegel, Dieter Weinand
  • Patent number: 5009705
    Abstract: A microdrill bit is made of a tungsten carbide based cemented carbide which contains a binder phase of 6% by weight to 14% by weight of a cobalt alloy and a hard dispersed phase of balance tungsten carbide. The cobalt alloy contains cobalt, chromium, vanadium and tungsten and has weight ratios so as to satisfy the relationships of 0.04.ltoreq.(c+d)/(a+b+c+d).ltoreq.0.10 and 0.50.ltoreq.c/(c+d).ltoreq.0.95, where a, b, c and d denote weight ratios of tungsten, cobalt, chromium and vanadium, respectively. The drill bit is formed so as to have a Rockwell A scale hardness of 92.0 to 94.0.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: April 23, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Hironori Yoshimura, Inada Shyogo
  • Patent number: 5006164
    Abstract: A starting material for injection molding of a metal powder including from 38 to 46% by volume of an organic binder and the balance of spherical iron powder with an average particle size from 2 to 6 .mu.m, which provides a sintered part having a density ratio of higher than 94%, by conducting injection molding, debinding and sintering in a non-oxidizing atmosphere at a temperature lower than the A.sub.3 transformation point of carbon steel.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: April 9, 1991
    Assignee: Kawasaki Steel Corporation
    Inventor: Yoshisato Kiyota
  • Patent number: 5004580
    Abstract: A method and apparatus for packing a permanent magnet powder wherein a solenoid coil is provided near the opening of a cylindrical molding space of a mold in such a manner that the direction of the central axis of the solenoid coil substantially coincides with the central axis of the molding space, and an alternating current magnetic field is applied, so that a permanent magnet powder above the opening is packed into the molding space. A magnetic pole may be provided in the center of the solenoid coil. The method of the present invention can be applied to not only a powder for a sintered magnet but also a powder for a bonded magnet.
    Type: Grant
    Filed: April 13, 1990
    Date of Patent: April 2, 1991
    Assignee: Fuji Electrochemical Co. Ltd.
    Inventors: Yoshio Matsuo, Hirofumi Nakano, Masakuni Kamiya, Kezuo Matsui
  • Patent number: 5004498
    Abstract: A dispersion strengthened copper alloy containing a copper matrix, and dispersion particles dispersed in the copper matrix within a range of 0.5 to 6 vol %. In this alloy, an average diameter of a matrix region where the dispersion particles are not present is 0.3 .mu.m or less, and the total amount of solid solution elements contained in the copper matrix is determined such that, when this amount of the solid solution elements is added to pure copper, the electric conductivity of the matrix is lowered by 5% IACS or less.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: April 2, 1991
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keizo Shimamura, Kagetaka Amano, Tatsuyoshi Aisaka, Satoshi Hanai, Kohsoku Nagata
  • Patent number: 5000781
    Abstract: The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 2-10 wt % and the balance is aluminum. The alloy has a predominately microeutectic microstructure. The invention also provides a method and apparatus for forming rapidly solidifed metal, such as the metal alloys of the invention, within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal.
    Type: Grant
    Filed: November 28, 1988
    Date of Patent: March 19, 1991
    Assignee: Allied-Signal Inc.
    Inventors: David J. Skinner, Paul A. Chipko, Kenji Okazaki
  • Patent number: 4999157
    Abstract: A method for molding powders comprises the steps of forming a mold support having at least an opening and a cavity, forming a film of latex on inner surfaces of the mold support by pouring the latex from the opening into the cavity of the mold support and discharging a substantial portion of the latex poured into the cavity, forming a thin-wall resilient mold inside the mold support by drying the film of latex formed, charging powders as materials for a compact from the opening into the thin-wall resilient mold, exhausting air out of the thin-wall resilient mold filled up with the powders through the opening and sealing the opening of the thin-wall resilient mold, separating the thin-wall resilient mold filled up with the powders from the mold support, and subjecting the thin-wall resilient mold to a cold isostatic press method treatment.
    Type: Grant
    Filed: March 5, 1990
    Date of Patent: March 12, 1991
    Assignee: NKK Corporation
    Inventors: Hiroaki Nishio, Akira Kato, Sazo Nakamura
  • Patent number: 4996022
    Abstract: A sintered body is produced by a process comprising the steps of mixing one or more metal powder particles with an organic binder, injection-molding the mixture to form a green body of a predetermined shape, removing the binder from the green body to form a porous body substantially made of the metal powder, and heating the porous body to a sintering temperature and holding it at that temperature to produce a sintered body, in which process the binder is removed through the sequence of the following steps: preheating the green body in an inert gas atmosphere in a temperature range that creates open pores in it; placing the green body, in which open pores have started to form, in a hydrogen gas atmosphere optionally mixed with an inert gas; holding the green body in a temperature range where the metal powder is not carburized and where the open pores will be maintained, so that the greater part of the binder is removed to form a porous body that is substantially made of the metal powder alone; and further hold
    Type: Grant
    Filed: July 10, 1990
    Date of Patent: February 26, 1991
    Assignees: Juki Corporation, Nippon Piston Ring Co., Ltd.
    Inventors: Norikazu Shindo, Tomoyuki Sekine, Yoshikatsu Nakamura, Takashi Kawamoto