Patents Examined by Leon Scott
  • Patent number: 6385227
    Abstract: A solid-state laser apparatus of the laser diode excitation type includes a condenser mirror to input incident light to a solid laser rod. The condenser mirror has an elliptical shape. In this apparatus, one focus of the mirror is located in a laser beam incident side and the other focus is located in a central axis of a laser rod. In addition, beam axes of beams from laser diodes are fixed to a long axis of the oval condenser mirror.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: May 7, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Nakayama, Teruichiro Fukasawa
  • Patent number: 6381256
    Abstract: A narrow band molecular fluorine laser system includes an oscillator and an amplifier, wherein the oscillator produces a 157 nm beam having a linewidth less than 1 pm and the amplifier increases the power of the beam above a predetermined amount, such as more than one or several Watts. The oscillator includes a discharge chamber filled with a laser gas including molecular fluorine and a buffer gas, electrodes within the discharge chamber connected to a discharge circuit for energizing the molecular fluorine, and a resonator including the discharge chamber for generating a laser beam having a wavelength around 157 nm. Line-narrowing optics are included intra- and/or extra-resonator for reducing the linewidth of the laser beam to less than 1 pm. The amplifier may be the same or a different discharge chamber, and optical and/or electronic delays may be used for timing pulses from the oscillator to reach the amplifier at a maximum in the discharge current of the amplifier.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: April 30, 2002
    Assignee: Lambda Physik AG
    Inventors: Uwe Stamm, Sergei V. Govorkov
  • Patent number: 6381255
    Abstract: A method and apparatus is provided for generating a laser beam of a wavelength suitable for ablating material. The apparatus includes a source of a laser beam of a wavelength which is not suitable for ablation and a frequency converter which uses harmonic generation to generate a laser beam of a suitable frequency. In preferred arrangements the frequency converter is a non-linear optical material that is maintained at a predetermined elevated temperature. In a preferred arrangement the pulse rate of the laser is selected to maintain the acceptance angle of the harmonic generator within predetermined limits.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: April 30, 2002
    Assignee: The Lions Eye Institute of Western Australia Incorporated
    Inventors: Paul Phillip Van Saarloos, Wayne Sheldon Pelouch
  • Patent number: 6377601
    Abstract: An ion laser apparatus includes a laser tube, first and second mirrors, a mirror angle adjusting mechanism, and an alignment controller. The first and second mirrors are disposed to sandwich the laser tube. The mirror angle adjusting mechanism adjusts an angle of at least one of the mirrors while scanning the mirror within a predetermined angle width. The alignment controller determines a scan angle width of the mirror in accordance with a light intensity distribution of a laser beam such that a variation value of the laser beam output from the laser tube falls within a predetermined width. A mirror angle adjusting method for this ion laser apparatus is also disclosed.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: April 23, 2002
    Assignee: NEC Corporation
    Inventor: Yasushi Aoki
  • Patent number: 6377595
    Abstract: A peaking capacitor layout in which a discharge energy is not lowered even when peaking capacitors are decreased in their capacitance, increased in their number and disposed in a plurality of rows. The discharge energy is uniformly distributed to obtain a stable laser power. A peaking capacitor group in a first row formed of a plurality of peaking capacitors and a peaking capacitor group in a second row formed of a plurality of peaking capacitors are disposed in a plurality of rows (two rows) in a direction in which a length of a loop changes. The capacitance of the peaking capacitors forming the second row having a long loop is adjusted to be smaller than that of the peaking capacitors forming the first row having a short loop. And, the capacitance of the peaking capacitors in the first and second rows are adjusted so that the distribution of the capacitance of the peaking capacitors becomes uniform along the longitudinal direction of the discharge electrodes.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: April 23, 2002
    Assignee: Komatsu Ltd.
    Inventors: Hirotoshi Inoue, Yasufumi Kawasuji, Tetsutarou Takano, Takashi Matsunaga
  • Patent number: 6377600
    Abstract: An iodine source for a chemical oxygen iodine laser (COIL) system (40, 50) is described. The iodine source is a combination of iodine monochloride and molecular iodine. The iodine monochloride and molecular iodine may be injected either simultaneously or sequentially through separate manifold/conduit assemblies (30, 102) into the mixing nozzle (22), or they may be combined together into a single gaseous feed stream. The iodine monochloride may be dissociated prior to being injected into the mixing nozzle (22) or, alternatively, the dissociated iodine monochloride may be combined with the molecular iodine feed stream in order to initiate the atomic iodine/molecular iodine chain reaction prior to injection into the mixing nozzle (22).
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: April 23, 2002
    Assignee: TRW Inc.
    Inventor: Carl A. Flegal
  • Patent number: 6373870
    Abstract: Laser annealing is performed by irradiating, while scanning, a semiconductor thin-film with laser light. The laser light that is linear on the irradiation surface is moved in its line-width direction and applied non-continuously. The laser light has, in its line-width direction, an energy density profile that assumes a step-like form in which the energy density varies in a step-like manner. In particular, the scanning pitch D and the step widths Ln are so set as to satisfy a relationship Ln≧D.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: April 16, 2002
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Naoto Kusumoto
  • Patent number: 6373863
    Abstract: An apparatus, composition, and method for producing an optical gain. The apparatus includes: an optical fiber having a core and a multiple cladding, the core being doped with Yb3+; a light source producing light at a wavelength in a range of from about 0.8 to about 1.06 microns to energize the yb3+ to produce laser action; and wherein the core is essentially devoid of Nd3+.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: April 16, 2002
    Assignee: Rutgers University
    Inventors: Yasutake Ohishi, Elias Snitzer
  • Patent number: 6373869
    Abstract: An optical system for producing ultraviolet radiation includes an optical source, an optical parametric oscillator (OPO), a frequency doubler, and a mixer. The optical source produces a first beam of radiation. The OPO receives a first portion of the first beam of radiation and produces a second beam of radiation therefrom. The frequency doubler receives a second portion of the first beam of radiation and produces the second harmonic thereof. The mixer mixes the second beam of radiation and the second harmonic of the first beam of radiation to produce an ultraviolet beam of radiation. In a preferred embodiment, the optical source includes a Nd:YAG laser which is frequency doubled to produce a first beam of radiation at a wavelength of approximately 532 nm; and the ultraviolet beam of radiation has a wavelength close to one of the excimer laser lines, typically either 193 nm or 157 nm.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: April 16, 2002
    Assignee: Actinix
    Inventor: James J. Jacob
  • Patent number: 6370173
    Abstract: A laser diode is mounted on a plate that fits closely within a mortise in a thermally conductive insert. The insert, in turn, fits closely within a thermally conductive sleeve. The plate has six sides and the laser diode is attached to one of the sides. Heat is conducted away from the remaining five sides of the plate. The insert includes a conic section that fits within a conic section in the sleeve to provide good thermal contact between the insert and the sleeve. The sleeve includes a plurality of holes and contains a fan for circulating air through the sleeve, thereby removing heat from the sleeve. The sleeve includes a cylindrical portion for being held in a hand.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: April 9, 2002
    Assignee: Coronado Laser Co., L.L.C.
    Inventor: Danny W. Martin
  • Patent number: 6370181
    Abstract: The optical transmission device comprises a transmitter which emits radiation vertically with respect to a covering surface. A reflection surface reflects a portion of the emitted radiation back onto an optically sensitive reception zone of a monitor receiver which is disposed on the same side as the transmitter. An intermediate body with a reflecting circumferential surface is disposed between the reflection surface and the reception zone. At least a portion of the reflected radiation passes from the circumferential surface to the reception zone, which significantly increases the yield of the reflected portion used for monitoring purposes.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: April 9, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jörg-Reinhardt Kropp
  • Patent number: 6370166
    Abstract: The wavefront of laser light as it propagates through a medium is controlled so that not only the inherent aberrations in the wavefront of the laser light itself but also the aberrations that are progressively caused by passage of laser light through the medium are effectively corrected to achieve long-distance propagation of the laser light through the medium.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: April 9, 2002
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Katsuaki Akaoka, Yoichiro Maruyama, Takashi Arisawa
  • Patent number: 6370165
    Abstract: A diamond coating formed on a WC—Co substrate prepared through a process including employing a plasma and a variety of interactions from a multiple laser system demonstrates exceptional adhesion and indicates a durable cubic diamond structure. The coating on the WC—Co substrate is typically between 25 and 40 &mgr;m thick and has an average crystal size of between 10 and 20 &mgr;m. Various methods of confirming the cubic diamond structure of the coatings have been employed. The adhesion of the diamond coating to the substrate is very strong. An electron microprobe analysis shows tungsten and cobalt atoms incorporated into the film and a layer depleted in cobalt exists at the diamond-WC—Co interface. Particulates of WC—Co—C alloy are spread over the top surface, apparently formed by condensation from the vapor phase of metal-containing molecules. Carbon is confirmed as being the main component of the surface layer.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: April 9, 2002
    Assignee: QQC, Inc.
    Inventors: Andrzej R. Badzian, Rustum N. Roy, Theresa Badzian, William R. Drawl, Pravin Mistry, Manuel C. Turchan
  • Patent number: 6366592
    Abstract: A semiconductor tunable laser system includes a tunable Fabry-Perot cavity and a cavity length modulator, which controls an optical length of the cavity at least over a distance corresponding to the spacings between the longitudinal modes of the laser cavity. Thus, the tunable Fabry-Perot cavity allows the laser cavity to have gain at the desired wavelength of operation while the cavity length modulator tunes the cavity length such that a longitudinal cavity mode exists at the desired wavelength of operation. Also, in one embodiment, a wavelength locker system is further provides that has a differential wavelength filter, e.g., stepped etalon, and a multi-element detector, e.g., a quad-detector. The controller then modulators the Fabry-Perot cavity to control the wavelength in response to the signal received from the multi-element detector.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: April 2, 2002
    Assignee: Axsun Technologies, Inc.
    Inventor: Dale C. Flanders
  • Patent number: 6366596
    Abstract: According to the invention, a high power diode pumped solid state laser is provided. The laser includes a first and second reflective surfaces which form an optical resonator cavity. A laser medium, particularly a Nd doped laser medium for example: a Nd:YAG, a Nd:YLF, or a Nd:YVO4 crystal is provided within the laser cavity. A fundamental frequency laser beam propagates from the front and back ends of the laser medium. The first reflective surface is highly reflective for fundamental beam. The second reflective surface is at least partially reflective for fundamental beam. The laser medium is end pumped by at least one diode pumping apparatus for example, a laser diode, or diode array, or fiber coupled laser diodes, whose wavelength matches at least one laser medium absorption band. The diode pumping apparatus is located adjacent either the front end or the back end of the laser medium, or both. The optical resonator cavity is configured to provide a laser beam diameter in the laser medium from about 0.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: April 2, 2002
    Assignee: Photonics Industries International, Inc.
    Inventors: Yusong Yin, Peili Chen, Dmitry Donskoy
  • Patent number: 6363091
    Abstract: A quantum absorber is provided having transitions that include a first transition between a first lower quantum state and an upper quantum state, and a second transition between a second lower quantum state and the upper quantum state. The first transition and the second transition have energies that correspond to frequencies of &ohgr;1 and &ohgr;2, respectively. The lower quantum states differ in energy by an energy difference subject to a total a.c. Stark shift. Incident electro-magnetic radiation is generated. The incident electro-magnetic radiation includes main frequency components and additional frequency components. The main frequency components are at frequencies of &OHgr;1 and &OHgr;2, equal to &ohgr;1 and &ohgr;2, respectively, and differ in frequency by a frequency difference. The additional frequency components collectively have a spectrum. The quantum absorber is irradiated with the incident electro-magnetic radiation.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 26, 2002
    Assignee: Agilent Technologies, Inc
    Inventors: Miao Zhu, Leonard S. Cutler
  • Patent number: 6363089
    Abstract: A compression-tuned bragg grating includes a tunable optical element 20,600 which includes either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20or a large diameter waveguide grating 600 having a core and a wide cladding. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The tunable element 20,600 is axially compressed which causes a shift in the reflection wavelength of the grating 12 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. At least a portion of the element may be doped between a pair of gratings 150,152, to form a compression-tuned laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB laser.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: March 26, 2002
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders
  • Patent number: 6359916
    Abstract: The frequency standard comprises a quantum absorber, source of incident electr-omagnetic radiation, detector, controller and signal output. The quantum absorber has a transition between a lower quantum state split by hyperfine interaction into two lower sub-state groups of at least one lower sub-state, and an upper quantum split by hyperfine interaction into upper sub-state groups of at least one upper sub-state. None of the upper sub-state groups is a cycling transition sub-state group having at least one allowed electric dipole transition to one lower sub-state group but none to the other. The upper quantum state differs in energy from a first lower sub-state in one of the lower sub-state groups and from a second lower sub-state in the other of the lower sub-state groups by energy differences that correspond to frequencies of &ohgr;1 and &ohgr;2, respectively.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 19, 2002
    Assignee: Agilent Technologies, Inc.
    Inventor: Miao Zhu
  • Patent number: 6359917
    Abstract: A detection signal that quantifies a resonant interaction between a quantum absorber and incident electro-magnetic radiation is generated. The quantum absorber is irradiated with the incident electro-magnetic radiation. The quantum absorber absorbs a portion of the incident electro-magnetic radiation and generates fluorescent electro-magnetic radiation in response to it. The quantum absorber additionally transmits the unabsorbed portion of the incident electro-magnetic radiation. The unabsorbed portion of the incident electro-magnetic radiation is detected to generate a first signal that has a first signal-to-noise ratio. The fluorescent electro-magnetic radiation is detected to generate a second signal that has a second signal-to-noise ratio. The first signal and the second signal are combined to generate the detection signal. The detection signal has a signal-to-noise ratio greater than the first signal-to-noise ratio and the second signal-to-noise ratio.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 19, 2002
    Assignee: Agilent Technolgoies, Inc.
    Inventors: Leonard S. Cutler, Miao Zhu
  • Patent number: 6359913
    Abstract: An injection locking system for lasers. In particular, a signal from a master laser is phase modulated and injected into a slave laser. The phase difference &phgr; is maintained at zero by way of a phase locked loop. By maintaining the phase difference &phgr; at zero, the frequency drift is compensated by maintaining the frequency within a predetermined locking range.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: March 19, 2002
    Assignee: TRW Inc.
    Inventor: Robert W. Lodenkamper