Patents Examined by Leslie C Pascal
  • Patent number: 11533548
    Abstract: A transmission device including a demultiplexer configured to demultiplex a multiplexed light obtained by multiplexing the plurality of wavelength division multiplexing (WDM) optical signals including different wavelength bands into the plurality of WDM optical signals, a plurality of optical amplifiers configured to amplify the plurality of WDM optical signals, respectively, a wavelength converter configured to convert a first wavelength band of the wavelength bands of at least a first WDM optical signal of the plurality of WDM optical signals amplified by the plurality of optical amplifiers into a second wavelength band of the wavelength bands of a second WDM optical signal of the plurality of WDM optical signals so that the second wavelength band does not overlap among the wavelength bands, and a multiplexer configured to multiplex the plurality of WDM optical signals which include the wavelength bands converted by the wavelength converter.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 20, 2022
    Assignee: FUJITSU LIMITED
    Inventors: Tomohiro Yamauchi, Tomoyuki Kato, Shigeki Watanabe, Yu Tanaka, Takeshi Hoshida
  • Patent number: 11509401
    Abstract: An optical connector of a power over fiber system includes a shutter. The shutter opens in conjunction with a connection operation to enable the connection and closes in conjunction with a disconnection operation to block feed light from exiting. A light receiving surface of the shutter is made of a wavelength conversion material. The light receiving surface receives the feed light when the shutter is closed. The optical connector is disposed at a feed-light output end in the power over fiber system.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 22, 2022
    Assignee: KYOCERA CORPORATION
    Inventor: Takehiko Suyama
  • Patent number: 11506842
    Abstract: An optical coupling device is described herein. The optical coupling device comprises a first waveguide and a second waveguide that are formed on a common substrate, and a resonator that is positioned out of plane with the two waveguides. The resonator and waveguides are positioned such that light traveling in each of the waveguides evanescently couples to the resonator but not to the other of the waveguides. The optical coupling device can be used in connection with improving linewidth of a laser source for a lidar sensor. In another example, the optical coupling device can be used in connection with wavelength division multiplexing.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 22, 2022
    Assignee: GM CRUISE HOLDINGS LLC
    Inventors: Jacob Levy, Vala Fathipour, Lutfollah Maleki, Vladimir S. Ilchenko
  • Patent number: 11493695
    Abstract: A non-powered passive optomechanical position switch and an operational control system for controlling an apparatus using an optical fiber waveguide, the switch including an orientable structure supporting a plurality of reflective surfaces at the terminus of the optical fiber waveguide, wherein at least some of the reflective surfaces each uniquely manipulates one or more properties of light received from the optical fiber waveguide in reflecting light back through the optical fiber waveguide to an optocontrolling transceiver. Orienting the orientable structure relative to the terminus of the optical fiber determines which of the plurality of reflective surfaces is positioned at the terminus of the optical fiber waveguide, and thereby determines what properties of light are manipulated and reflected back to the optocontrolling transceiver, through the optical fiber waveguide thereby controlling an apparatus.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 8, 2022
    Inventor: Thomas C. Stewart
  • Patent number: 11487181
    Abstract: Examples herein relate to optical systems. In particular, implementations herein relate to an optical system including an optical transmitter configured to transmit optical signals. The optical transmitter includes a first optical source coupled to an input waveguide and configured to emit light having different wavelengths through the input waveguide. The optical transmitter includes a Mach-Zehnder interferometer that includes a first arm and a second arm. The MZI further includes a first optical coupler configured to couple the emitted light from the input waveguide to the first and second arms and an array of two or more second optical sources coupled to the first arm. Each of the two or more second optical sources are configured to be injection locked to a different respective wavelength of the emitted light transmitted from the first optical source. The MZI further includes a second optical coupler configured to combine the emitted light from the first and second arms after propagating therethrough.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 1, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sudharsanan Srinivasan, Di Liang, Geza Kurczveil, Raymond G. Beausoleil
  • Patent number: 11476948
    Abstract: An optical endless phase shifting device includes a Mach-Zehnder structure operated in push-pull configuration and that creates a differential phase shift. The first stage outputs combined signals which are phase shifted by a phase shift of zero or ? in the second stage by phase shifters provided in both arms of the second stage or in a first arm only. These additionally phase-shifted signals are combined to at least one output signal. A control device controls the phase shifters such that endless shifting capability is provided by switching one of the phase shifters or the single phase shifter of the second stage to the respective other value when the differential phase shift reaches a given range of the differential phase shift of [0;?/2] in the configuration with two phase shifters in the second stage or [0;?/2] in the configuration with only one phase shifters in the second stage.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: October 18, 2022
    Assignee: ADVA Optical Networking SE
    Inventor: Michael Eiselt
  • Patent number: 11454772
    Abstract: A short-waveband active optical component based on a vertical emitting laser and a multi-mode optical fiber (3) is provided.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 27, 2022
    Assignee: FUZHOU PHOTOP OPTICS CO., LTD
    Inventors: Guanglong Yu, Hong Huang, Zihang Wang
  • Patent number: 11454762
    Abstract: A device for inserting a plurality of optical beams into a single-mode optical fibre, a guiding structure of which is composed of a core with a first refractive index, a cladding with a second refractive index, and a coating with a third refractive index. The device includes an optical mixer configured to insert, into the single-mode optical fibre, the plurality of optical beams, at least one of which has a distribution of its radial and angular electromagnetic amplitude with a maximum amplitude peak in the cladding.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: September 27, 2022
    Assignee: ORANGE
    Inventor: Philippe Chanclou
  • Patent number: 11444715
    Abstract: An apparatus includes a first reconfigurable optical add/drop multiplexer (ROADM) to receive a first optical signal and a second ROADM to receive a second optical signal. The apparatus also includes a reconfigurable optical switch that includes a first switch, switchable between a first state and a second state, to transmit the first optical signal at the first state and block the first optical signal at the second state. The reconfigurable optical switch also includes a second switch, switchable between the first state and the second state, to transmit the second optical signal at the first state and block the second optical signal at the second state. The reconfigurable optical switch also includes an output port to transmit an output signal that is a sum of possible optical signals transmitted through the first switch and the second switch.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 13, 2022
    Assignee: Juniper Networks, Inc.
    Inventor: Kevan Peter Jones
  • Patent number: 11428869
    Abstract: We describe a high coupling-efficiency waveguide grating coupler for use in the optical interface between a planar multimode waveguide and a multimode optical fiber in mode division multiplexed optical communication systems. The multimode waveguide grating coupler can launch light from the different modes of the planar waveguide into the different modes of the multimode optical fiber and vice-versa. A silicon based multimode waveguide grating coupler was used to couple two polarizations of a multimode silicon waveguide into the LP01 mode and LP11 mode from a step index multi-mode fiber (MMF). Simulations of the preliminary design predicted the coupling efficiency to be ?4.3 dB for LP01 mode and ?5.0 dB for the LP11 mode. Experimental coupling efficiency of ?4.9 dB and ?6.1 dB were obtained for LP01 and LP11, respectively. The multiplexer can be passive.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: August 30, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Hon Ki Tsang, Yeyu Tong
  • Patent number: 11405134
    Abstract: An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 2, 2022
    Assignee: MARVELL ASIA PTE LTD.
    Inventors: Benjamin P. Smith, Arash Farhoodfar
  • Patent number: 11362739
    Abstract: In order to suppress any reduction in the reception performance of an optical transceiver, the optical transceiver includes a light source, an optical splitter that splits the output of the light source into a first split light and a second split light, an optical modulation unit that modulates the first split light, a coherent receiver that causes the inputted received light to interfere with the second split light, and a first control unit that controls the split ratio of the optical splitter on the basis of the reception characteristic of the received light received by the coherent receiver.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: June 14, 2022
    Assignee: NEC CORPORATION
    Inventor: Yuta Goebuchi
  • Patent number: 11340410
    Abstract: An photonic circuit includes a substrate, a plurality of first light waveguides disposed on the substrate, the first light waveguides extending in a first direction, a plurality of second light waveguides disposed on the substrate and extending in a second direction intersecting the first direction, and a plurality of first micro-ring resonators disposed on the substrate. Each of the first light waveguides has an intersection with each of the second light waveguides. Each of the intersections is provided with a first micro-ring resonator of the first micro-ring resonators. Each first micro-ring resonator is configured to route signals of a respective wavelength from one of the light waveguides at the intersection to another light waveguide at the intersection.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: May 24, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Luca Ramini, Mir Ashkan Seyedi, Marco Fiorentino
  • Patent number: 11342993
    Abstract: Systems, methods, and devices are disclosed for implementing photonic links. Methods include transmitting light using an optical emitter, splitting, using an input coupler, the light into a first path and a second path, the first path being provided to a modulator, and the second path being provided to a phase shifter, and combining, using an output coupler, an output of the modulator and an output of the phase shifter. Methods further include identifying a modulator phase angle that reduces a third order distortion at an output of the output coupler, applying a first bias voltage to a modulator to maintain the identified modulator phase angle, and applying a control signal to the phase shifter to maintain a phase difference between an output of the modulator and an output of a phase shifter.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 24, 2022
    Assignee: The Boeing Company
    Inventor: Daniel Yap
  • Patent number: 11327234
    Abstract: An optical semiconductor device includes a first optical coupler including a first input port and a second input port, a first optical branching device including a first output port and a second output port, a second optical coupler including a third input port and a fourth input port, a second optical branching device including a third output port and an fourth output port, a first single mode waveguide configured to connect the second input port and the first output port, a second single mode waveguide configured to connect the second output port and the third input port, a third single mode waveguide configured to connect the fourth input port and the third output port, and a fourth single mode waveguide configured to connect the fourth output port and the first input port.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: May 10, 2022
    Assignee: FUJITSU LIMITED
    Inventor: Yohei Sobu
  • Patent number: 11313797
    Abstract: Sticking of core layer is suppressed, and deterioration of sensitivity of a sensor is prevented. An optical waveguide (10) includes a substrate (15), a core layer (11), a support, and a protrusion (18). The core layer (11) can transmit light. The support connects at least a portion of the substrate (15) and a portion of the core layer (11) together. The support supports the core layer (11). The protrusion (18) is arranged at a position different from a position of the support in a space between the substrate (15) and the core layer (11). The protrusion (18) has a maximum height at a position deviated from a central position cp of the core layer (11) in a width direction. The protrusion (18) protrudes toward the core layer (11) from the substrate (15).
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: April 26, 2022
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Tatsushi Yagi, Takaaki Furuya, Toshiro Sakamoto
  • Patent number: 11296811
    Abstract: An apparatus includes a first input port, a first switch, and a second switch. The first switch and the second input port are in optical communication with the first input port. The apparatus also includes a second input port, a third switch, and a fourth switch. The third switch and the fourth switch are in optical communication with the second input port. Each switch is switchable between a first state to pass optical signals and a second state to block optical signals. The apparatus also includes a first combiner in optical communication with the first input port via the first switch and the second input port via the third switch. The apparatus also includes a second combiner in optical communication with the first input port via the second switch and the second input port via the fourth switch.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: April 5, 2022
    Assignee: Juniper Networks, Inc.
    Inventor: Kevan Peter Jones
  • Patent number: 11296796
    Abstract: Disclosed herein is a dual parallel Mach-Zehnder-modulator (DPMZM) device comprising a DPMZM 10 having first and second inner MZMs arranged parallel to each other. The first inner MZM generates an in-phase component EI of an optical signal in response to a first driving voltage VI, and the second inner MZM generates a quadrature component EQ of said optical signal in response to a second driving voltage VQ. Further disclosed is a calculation unit 52 configured for receiving an in-phase component yI and a quadrature component yQ of a desired base-band signal, and for calculating pre-distorted first and second driving voltages VI, VQ. The calculation of the pre-distorted first and second driving voltages VI, VQ is based on a model of said DPMZM 10 accounting for I-Q cross-talk, and using an algorithm that determines said first and second driving voltages VI, VQ each as a function of both of said in-phase and quadrature components yI, yQ of said base-band signal.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: April 5, 2022
    Assignee: XIEON NETWORKS S.a.r.l.
    Inventors: Alessandro Bianciotto, Stefano CalabrĂ³, Maxim Kuschnerov, Mahdi Mezghanni, Antonio Napoli, Bernhard Spinnler
  • Patent number: 11275221
    Abstract: An optical connector assembly a first structure and a second structure, the two structures secured together using a retention structure to form a hybrid assembly. The retention structure uses a slot apex located in a slot channel for securing at least one latch pin of a coupling nut to an adapter housing forming the ingress protected connector without the use of a bias spring. The hybrid assembly is designed to resist water or debris ingress, and may eliminate the use of a bias force to further resist separating the hybrid assembly. When the latch pin passes over the apex and resides in a recess, an audible sound is made indicating the hybrid assembly adapter and coupling nut is mated.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: March 15, 2022
    Assignee: Senko Advanced Components, Inc.
    Inventors: Kazuyoshi Takano, Jeffrey Gniadek, Paul Newbury
  • Patent number: 11275207
    Abstract: Structures for a waveguide bend and methods of fabricating a structure for a waveguide bend. A waveguide core has a first section, a second section, and a waveguide bend connecting the first section with the second section. The waveguide core includes a first side surface extending about an inner radius of the waveguide bend and a second side surface extending about an outer radius of the waveguide bend. A curved strip is arranged over the waveguide bend adjacent to the first side surface or the second side surface.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: March 15, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob