Patents Examined by Leslie Coburn
  • Patent number: 8672993
    Abstract: A stent graft for endovascular introduction into the pararenal region of the descending aorta. The stent graft has an elongate tubular body (10) with a proximal portion (12), a distal portion (16) of a diameter less than the proximal portion and a tapered central portion (14). A notional transverse clock face on the tubular body has 12 o'clock at a notional anterior longitudinal datum line. The stent graft has a scalloped cut out (26) centered at about 12:30 o'clock and a fenestration (28) at about 12:00 o'clock in the proximal portion and first and second fenestration assemblies which can be low profile side arms at about 2:15 o'clock and about 10:00 o'clock in the tapered central portion. The tapered central portion can have an arcuate side wall (30) so that the tapered portion has an outer face which is concave.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 18, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Timothy A. Chuter, David Ernest Hartley, Blayne A. Roeder
  • Patent number: 8663305
    Abstract: A stent or stent-graft delivery system includes a handle having a graft cover retractor having a screw gear and a drive and quick release assembly. The drive and quick release assembly includes a proximal portion and a distal portion that are separable. The proximal portion of the drive and quick release assembly rotates in a first rotational direction about the screw gear to retract the graft cover using the screw gear. The drive and quick release assembly transitions from retraction using the engagement with the screw gear to retraction by sliding by the user grasping the distal portion instead of the proximal portion, and sliding the proximal portion only along the screw gear. In transitioning from using the screw gear to sliding along screw gear, it unnecessary to push any button and unnecessary for the user to remove her/his hand from the assembly.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventor: Jeffery Argentine
  • Patent number: 8663310
    Abstract: A hybrid stent graft device for treatment of a Type A dissection having a first tubular portion for placement into the ascending aorta and a second tubular portion for extending around the thoracic arch and down the descending aorta is disclosed. The first tubular portion is connectable to the aorta between the sinotubular junction and the brachiocephalic artery so that it essentially replaces the ascending aorta. A temporary bypass tube allows perfusion during an operation. The second tubular portion has an elongate recess outside of the second tubular portion and an aperture defining a fluid flow path into the recess. The recess is intended to engage an outer curve of the thoracic arch to enable blood flow into the arteries of the thoracic arch. An introduction device in combination with the hybrid stent graft described above is also disclosed.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: March 4, 2014
    Assignees: Cook Medical Technologies LLC, The Cleveland Clinic Foundation
    Inventors: Roy K. Greenberg, Krasnodar Ivancev, David Ernest Hartley
  • Patent number: 8632588
    Abstract: A mitral cerclage annuloplasty apparatus comprises a tissue protective device and a cap device having a cerclage suture disposed within a first protective tube and a second protective tube, the proximal portions of the two tubes being attached side-by-side longitudinally to define a stem portion, the distal portions of the two tubes being separated thereafter, and a cap device that covers the stem portion wherein the stem portion and the cap device interlock, so that once the cerclage suture is knotted on the outer surface of the cap device, cap device can be pulled outwardly to enhance and maintain tension applied to the mitral annulus thus successfully treating the mitral regurgitation.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: January 21, 2014
    Inventor: June-Hong Kim
  • Patent number: 8568461
    Abstract: Medical devices and related methods for the treatment of spinal conditions are described herein. In one embodiment, a method includes disposing at least a portion of a support member into a space between adjacent spinous processes. The support member defines a lumen between a proximal end and a distal end of the support member. An expandable member is inserted through the lumen of the support member such that a distal end portion of the expandable member is disposed outside a distal end of the lumen and a proximal end portion of the expandable member is disposed outside a proximal end of the lumen. The distal end portion and the proximal end portion of the expandable member are then expanded such that each of the distal end portion and the proximal end portion of the expandable member has an outer diameter greater than an outer diameter of the support member.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 29, 2013
    Assignee: Warsaw Orothpedic, Inc.
    Inventor: Andrew C. Kohm
  • Patent number: 8556957
    Abstract: A system for treating a vascular condition includes a stent including hydroxyapatite fibers interwoven to define a stent lumen. Another aspect of the invention is a method of manufacturing a stent by forming hydroxyapatite fibers and biodegradable polymeric fibers, and interweaving the fibers to form a stent wall. The hydroxyapatite fibers can be formed by a sol-gel process, followed by spinning of the gel to form the hydroxyapatite fibers.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: October 15, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventor: Iskender Bilge
  • Patent number: 8545553
    Abstract: Apparatus is provided that includes an implant structure, which includes a contracting mechanism, which includes a rotatable structure, arranged such that rotation of the rotatable structure contracts the implant structure. A longitudinal member is coupled to the contracting mechanism. A tool for rotating the rotatable structure is configured to be guided along the longitudinal member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool. Other embodiments are also described.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 1, 2013
    Assignee: Valtech Cardio, Ltd.
    Inventors: Yuval Zipory, Tal Hammer, Yossi Gross, Amir Gross, Oz Cabiri, Francesco Maisano, Eran Miller
  • Patent number: 8545550
    Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Biosensors International Group, Ltd.
    Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
  • Patent number: 8500808
    Abstract: Provided is an artificial eardrum using silk protein and a method of fabricating the same. The artificial eardrum is fabricated in the form of a silk membrane by desalinating and drying silk protein (or silk fibroin) or a silk protein complex solution obtained after removal of sericin from a silkworm cocoon or silk fiber. Thus, regeneration of an eardrum perforated due to disease or a sudden accident is stimulated, a boundary of the regenerated eardrum is clean and biocompatibility and transparency are increased. In addition, the artificial eardrum may be fabricated using the silk protein or silk protein complex solution obtained from a silkworm cocoon alone or mixed with collagen, alginic acid, PEG or pluronic 127.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 6, 2013
    Assignees: Republic of Korea represented by Rural Development Administration, Industry Academic Cooperation Foundation, Hallym University
    Inventors: Hae Yong Kweon, Kwang Gill Lee, Seok Woo Kang, Joo Hong Yeo, You Young Jo, Soon Ok Woo, Sang-Mi Han, Chan Hum Park, Jin Kim, Chun Hwoi Kim
  • Patent number: 8454659
    Abstract: Systems and method in accordance with an embodiment of the present invention can includes an implant comprising a first wing, a spacer extending from the first wing, and a distraction guide. The distraction guide is arranged in a first configuration to pierce and/or distract tissue associated with adjacent spinous processes extending from vertebrae of a targeted motion segment. The implant can be positioned between the adjacent spinous processes and once positioned, the implant can be arranged in a second configuration. When arranged in a second configuration, the distraction guide can act as a second wing. The first wing and the second wing can limit or block movement of the implant along a longitudinal axis of the implant.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 4, 2013
    Assignee: Kyphon Sarl
    Inventors: James F. Zucherman, Ken Y. Hsu, Charles J. Winslow, Scott A. Yerby, John J. Flynn, Steven T. Mitchell, John A. Markwart
  • Patent number: 8425600
    Abstract: A medical implant assembly and method having a medical implant, e.g. a breast prostheses, attached to a biological interface. The biological interface is comprised of a dermal material with capsular contracture inhibiting properties so that once the medical assembly is inserted into the host, the biological interface, which is intimately coupled to the implant, prevents/reduces capsular contracture formation around the implant. The biological interface comprises a plurality of apertures along its periphery, and attaches to the medical implant by receiving a plurality of attachment flaps or appendages located on the exterior surface of the medical implant within or through the apertures. The attachment of the biological interface is such that the assembly remains intact even where the attachment flaps loosen upon expansion of the implant after insertion into a host, as where the implant is therein injected to a desired dimension.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 23, 2013
    Inventor: G. Patrick Maxwell
  • Patent number: 8382819
    Abstract: A radiopaque nitinol stent for implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element including tungsten. The added tungsten in specified amounts improve the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same strut pattern coated with a thin layer of gold. Furthermore, the nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 26, 2013
    Assignee: Abbot Cardiovascular Systems Inc.
    Inventors: Brian Lee Pelton, John F. Boylan
  • Patent number: 8366764
    Abstract: By a contrast means contained in an inventive stent which has a greater permeability for x-radiation features than the body tissue surrounding the stent in a relevant body conduit, this stent can be clearly detected in its position on an x-ray image of the relevant body conduit while at the same time exhibiting good biological compatibility; a gas, especially one contained in cavities of the stent is provided as a contrast means. The inventive production method for this stent with the aid of a catheter embodied specially for the purpose enables the production of the stent from a malleable polymer mass in the relevant body conduit so that the stent is adapted especially precisely to the shape of the relevant body conduit.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Mathias Hörnig
  • Patent number: 8357193
    Abstract: Transluminal access system includes a stent delivery catheter having a handle control mechanism. The catheter comprises a number of components for establishing an initial penetration between adjacent body lumens and subsequently implanting a stent or other luminal anchor therebetween. Manipulation of the stent components is achieved using control mechanisms on the handle while the handle is attached to an endoscope which provides access to a first body lumen.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: January 22, 2013
    Assignee: Xlumena, Inc.
    Inventors: Hoang Phan, John Lunsford, Kenneth F. Binmoeller
  • Patent number: 8323337
    Abstract: A heart valve assembly includes a prosthesis and a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus. The prosthesis includes an annular member, a flexible core at least partially defining a sewing cuff extending radially outwardly from the annular member, a rail ring disposed between the flexible core and the annular member, and a plurality of guide rails extending from the rail ring through respective openings in the flexible core. A fabric covering covers the prosthesis, and the guide rails extend through respective openings in the fabric covering. The prosthetic valve includes a frame including receptacles for receiving respective guide rails. After implanting the prosthesis within a biological annulus, the prosthetic valve is advanced along the guide rails until retention elements on the guide rails engage the receptacles to secure the prosthetic valve relative to the prosthesis.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Donnell W. Gurskis, Takashi Harry Ino, Ernest Lane, Steven R. Bacich
  • Patent number: 8292948
    Abstract: An implantable prosthesis for percutaneous placement within a vein that forces opposing portions of the vessel wall of a vein together to create a new valve of autologous vein tissue to be operable to alternate between a valve closed configuration and a valve open configuration. When in a preset closed configuration, the implantable prosthesis pushes or pulls portions of the vessel wall of the vein together to substantially close the vein lumen and prevent retrograde blood flow from backflowing through the new valve in the valve closed configuration. The implantable prosthesis has leg portions that may be pushed apart in response to antegrade blood flow through the vein to allow the new valve to achieve the valve open configuration.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 23, 2012
    Assignee: Medtronic Vascular, Inc.
    Inventors: Kevin Mauch, Melissa Jeffries, Ryan Bienvenu, Maria Arreguin
  • Patent number: 8267989
    Abstract: The present invention provides inflatable porous implants, such as grafts, stent-grafts, and bladders, as well as methods and kits for drug delivery. In particular, the grafts and stent-grafts of the present invention provide for the delivery of a therapeutic agent into a flow conduit in the body. The inflatable porous implants provide for direct delivery of larger, more precise dosages of drugs over longer administration periods into the body. Moreover, these inflatable porous implants are often flexible when inserted and have a low profile delivery configuration for easy placement. The implants of the present invention further provide a mechanical or structural function in addition to drug delivery in a single integrated structure.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignee: Trivascular, Inc.
    Inventors: Robert G. Whirley, James M. Shapiro
  • Patent number: 8252046
    Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 28, 2012
    Assignee: Biosensors International Group, Ltd.
    Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
  • Patent number: 8241355
    Abstract: A haptic is provided for use in an accommodating intraocular lens. The haptic has multiple filaments, each connected to the edge of the optic at one end. Each filament has a shape that conforms to an equatorial region of the capsular bag. The haptic couples the forces exerted by the capsular bag of the eye during accommodation radially to the edge of the optic, produce a diametric expansion or compression of the optic. This diametric motion distorts the optic, producing a change in any or all of the anterior radius, the posterior radius, and the thickness. These changes affect the power of the lens and/or location of the image. The haptic may optionally have a thin membrane joining the filaments at the optic end, and may optionally have a connecting ring that joins the filaments at the end opposite that of the optic.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: August 14, 2012
    Assignee: Abbott Medical Optics Inc.
    Inventors: Daniel G. Brady, Henk A. Weeber
  • Patent number: 8231671
    Abstract: A mitral cerclage annuloplasty apparatus comprises a tissue protective device and a knot delivery device. The tissue protective device comprises a first protective tube and a second protective tube. The knot delivery device comprises a tube wherein a loose knot is looped around its distal end through a hole and wherein tight knot is formed when the distal end of the tube is cut open. Alternatively, the knot delivery device comprises an inner tube and outer tube. The inner tube is insertable and rotatable inside the outer tube. When the tubes are in a closed position by rotating either the outer tube or the inner tube, a hole is created near its distal end. When the tubes are in open position by rotating either the outer tube or the inner tube, the hole joins the opening of the outer tube and lengthens.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: July 31, 2012
    Inventor: June-Hong Kim