Patents Examined by Lilia V Nedialkova
  • Patent number: 10050311
    Abstract: The present invention provides an electrode for a secondary battery, more specifically an electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on at least one surface or the whole outer surface of the current collector; a conductive material-coating layer formed on the top surface of the electrode active material layer and comprising a conductive material and a first polymer binder; and a porous coating layer formed on the top surface of the conductive material-coating layer and comprising a second polymer binder. Also, the present invention provides a secondary battery and a cable-type secondary battery comprising the electrode.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 14, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Jang-Hyuk Hong, Hye-Ran Jung, Je-Young Kim, Jong-Hun Kim
  • Patent number: 9833770
    Abstract: A method for producing a catalyst supporting a metal or an alloy on a support, including: independently controlling a temperature of a first supercritical fluid to be first temperature, the first supercritical fluid containing a precursor of the metal or precursor of the alloy that is dissolved in a supercritical fluid; independently controlling a temperature of the support to be a second temperature higher than the temperature of the first supercritical fluid; and supplying the first supercritical fluid controlled to the first temperature to the support, to cause the metal or the alloy to be supported on the support.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: December 5, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Satoru Aizawa
  • Patent number: 9837644
    Abstract: A battery assembly includes a housing defining a plenum having an inlet, and a row of battery cells disposed within the housing. Each adjacent pair of the cells defines a gap in fluid communication with the plenum. The gaps proximate to the inlet are narrower than the gaps distant from the inlet to promote generally equalized flow of fluid through the gaps.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: December 5, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: Thomas A. Wagner
  • Patent number: 9831519
    Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 ?m-2,500 ?m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm2 at a C-rate of C/2.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: November 28, 2017
    Assignee: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, Mihai Duduta, Richard Holman, Pimpa Limthongkul, Taison Tan
  • Patent number: 9831518
    Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: November 28, 2017
    Assignee: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, Mihai Duduta, Richard Holman, Pimpa Limthongkul, Taison Tan
  • Patent number: 9793529
    Abstract: Provided is a layered double hydroxide oriented membrane in which layered double hydroxide plate-like particles are highly oriented in the approximately perpendicular direction and which is also suitable for densification. The layered double hydroxide oriented membrane of the present invention is composed of a layered double hydroxide represented by the general formula: M2+1-xM3+x(OH)2An?x/n.mH2O wherein M2+ is a divalent cation, M3+ is a trivalent cation, An? is an anion having a valency of n, n is an integer of 1 or greater, x is 0.1 to 0.4, and m is 0 or greater, wherein when a surface of the oriented membrane is measured by X-ray diffractometry, a peak of a (003) plane is not substantially detected or is detected to be smaller than a peak of a (012) plane.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: October 17, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Megumi Fujisaki, Naomi Saito, Naohito Yamada
  • Patent number: 9793524
    Abstract: A water resistant battery box for use with electronic faucets. The battery box includes a lower housing, a cover supported by the lower housing, and an upper housing positioned between the lower housing and the cover. The upper housing includes a lip seal cooperating with the lower housing to prevent water from leaking into the housing while permitting for internal pressure within the battery box to be relieved.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: October 17, 2017
    Assignee: Delta Faucet Company
    Inventors: Kurt Thomas, Derek Brown, Joel Sawaski
  • Patent number: 9768478
    Abstract: A battery assembly includes a plurality of battery cells arranged in an array. The array has first and second longitudinal sides and a plurality of spacers interleaved with the cells to create an air gap between adjacent cells to allow air circulation between the cells. An inlet manifold is disposed on the first longitudinal side and includes an inlet arranged such that air flows into the manifold in a direction substantially parallel to the first longitudinal side. A plate is disposed within the manifold and extends along the first longitudinal side. The plate has a proximal end near the inlet and a distal end. The plate has openings that each define a pass-through area that allows the air to circulate through the plate. The openings are arranged on the plate such that the plate has a larger pass-through area near the proximal end than near the distal end.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 19, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: LeeAnn Wang, George Albert Garfinkel
  • Patent number: 9768468
    Abstract: A battery manufacturing method has a first depressurization step of depressurizing the inside of a liquid injecting chamber, an injection step of injecting, in the inside of the liquid injecting chamber, a liquid electrolyte into the battery through an opening portion formed at the top end of an outer case body of the battery, a second depressurization step of depressurizing the inside of a sealing chamber and a sealing step of sealing the opening portion in the inside of the sealing chamber. Vacuum attainment time until the pressure of the inside of the liquid injecting chamber becomes at a predetermined vacuum degree is measured in the first depressurization step, and if this vacuum attainment time exceeds a first threshold, a depressurization rate is reduced and a depressurization time is extended.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 19, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Keisho Ishibashi, Ryo Inoue, Natsumi Satoh
  • Patent number: 9761851
    Abstract: A vehicle installed battery pack is provided with a pressure release structure. The vehicle installed battery pack includes a battery pack case, a battery pack module. The battery pack case includes a battery pack lower frame and a battery pack upper cover. The battery pack module is disposed in the battery pack lower frame. The battery pack upper cover is securely joined to the battery pack lower frame via a seal member that extends continuously about an entire perimeter of respective outside peripheral edge portion of the battery pack upper cover. The battery pack upper cover includes a deforming stepped portion having a height difference at least in a heightwise direction; and a weakly joined portion having a lower joint strength than other joined portions being set in an area of the seal member extending continuously about the entire perimeter. The area corresponds to the deforming stepped portion.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 12, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takeshi Onodera, Nobuyoshi Suzuki
  • Patent number: 9748538
    Abstract: A motor vehicle battery has a plurality of battery modules (12). Each battery module (12) is fastened to housing walls (15) of a battery housing (11). The battery housing (11) has at least two housing modules (17, 18) positioned above one another and formed with housing module walls (19, 20). At least some of the mutually adjoining housing module walls (19, 20) interengage in the manner of toothing to form the housing walls (15, 16).
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: August 29, 2017
    Assignees: Dr. Ing. h.c. F. Porsche Aktiengesellschaft, Robert Bosch GmbH, Samsung SDI Co., Ltd.
    Inventors: Thomas Fritz, Alexander Klausmann, Klaus Wipfler, Claus Gerald Pflueger, Roland Wiest
  • Patent number: 9748551
    Abstract: Battery parts, such as battery terminals, and associated systems and methods for making the same are disclosed herein. In one embodiment, a battery part has a base portion that includes one or more undercut sealing portions, each having a root and a lip. The lip can flare outwardly from the root to define an undercut between the root and the lip of the sealing portion. In some embodiments, the battery terminal can include adjacent sealing portions having opposing undercuts defined by overlapping lips of the adjacent sealing portions. Another embodiment includes a forming assembly for use with, for example, a battery part having a bifurcated acid ring with spaced apart lips. The forming assembly can include movable forming members that can be driven together to peen, crimp, flare or otherwise form the lips on the bifurcated acid ring.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 29, 2017
    Assignee: Water Gremlin Company
    Inventors: Tracy L. Cain, Michael Garin
  • Patent number: 9735455
    Abstract: A metal-air battery with a high discharge capacity is provided. Discharge capacity can be increased by a metal-air battery that includes an air electrode, a negative electrode and an electrolyte layer, where the electrolyte layer includes a porous separator, and a liquid electrolyte infiltrated in the separator, and a contact angle between the liquid electrolyte and a negative electrode side-face of the separator is smaller than that between the liquid electrolyte and an air electrode side-face of the separator.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: August 15, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yushi Suzuki
  • Patent number: 9722265
    Abstract: A fluid detection system and method for a fuel cell power plant is disclosed having a pressure sensor (61, 161) positioned in a fuel cell stack assembly (10) to measure pressure of fluid/liquid in a fluid/liquid flow path (40, 42, 44) therein and to provide a pressure-based signal (90, 63). The pressure-based signal (90, 63) is used to control a liquid management arrangement (53) at least during start-up and shut-down of the cell stack assembly (10) to regulate water level. The liquid management arrangement (53) may include means (50, 51) for controllably applying and releasing a vacuum to a water manifold (44, 54; 100) of the cell stack assembly (10) to regulate water flow and level therein. The pressure-based control of water level may extend across the entire operating range of the cell stack assembly (10), or may be complemented during steady state operation by voltage-based sensors (66, 166).
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 1, 2017
    Assignee: Audi AG
    Inventor: Praveen Narasimhamurthy
  • Patent number: 9716276
    Abstract: An electrode for lithium ion batteries, the electrode having a metal film which is inert to lithium ions and having a plurality of silicon nanowires protruding from the film, which are arranged on at least one flat side of the film, wherein sections of the nanowires are enclosed by the metal film.
    Type: Grant
    Filed: January 3, 2016
    Date of Patent: July 25, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joerg Bahr, Juergen Carstensen, Helmut Foell, Oliver Riemenschneider, Hauke Hartz, Emmanuel Ossei-Wusu
  • Patent number: 9716299
    Abstract: Thermal interface materials and methods of manufacturing the same are disclosed. The thermal interface material can include a matrix and a filler. The filler can include graphene and multilayer graphene disposed within the matrix. Alternatively, the thermal interface material can also include a matrix, a metallic filler, and a graphene filler.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 25, 2017
    Assignee: The Regents of the University of California
    Inventor: Alexander A. Balandin
  • Patent number: 9695519
    Abstract: A positive electrode catalyst, for use in a positive electrode in a device provided with the positive electrode and a negative electrode, in which a reaction represented by 4OH??O2+2H2O+4e? is performed on a side of the positive electrode. The positive electrode catalyst includes a layered metal oxide, wherein the layered metal oxide is a Ruddlesden-Popper type layered perovskite represented by (La1-xAx) (Fe1-yBy)3(Sr1-zCz)3O10-a wherein, A is a rare earth element other than La, B is a transition metal other than Fe, and C is an alkaline earth metal other than Sr; and x satisfies an expression: 0?x<1, y satisfies an expression: 0?y<1, z satisfies an expression: 0?z<1, and a satisfies an expression: 0?a?3.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: July 4, 2017
    Assignees: SANTOKU CORPORATION, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Nobuaki Ohguri, Hiroshi Takano, Tadatoshi Murota, Motofumi Matsuda, Tatsuya Takeguchi
  • Patent number: 9640829
    Abstract: A heater includes a heater housing extending along a heater axis; a fuel cell stack assembly disposed within the heater housing and having a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent; an electric resistive heating element disposed within the heater housing and electrically connected to the fuel cell stack assembly; and a first thermal switch located between the fuel cell stack assembly and the electric resistive heating element. The first thermal switch is closed to place the fuel cell stack assembly in electrical communication with the electric resistive heating element when the fuel cell stack assembly is electrochemically active and is open to prevent electrical communication between the fuel cell stack assembly and the electric resistive heating element when the fuel cell stack assembly is not electrochemically active.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 2, 2017
    Assignee: Delphi Technologies, Inc.
    Inventors: Giulio A. Ricci-Ottati, Bernhard A. Fischer, Thomas W. Silvis, Kurtis F. Weess
  • Patent number: 9590241
    Abstract: The present invention provides an electrode for a secondary battery, more specifically an electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on at least one surface or the whole outer surface of the current collector; a conductive material-coating layer formed on the top surface of the electrode active material layer and comprising a conductive material and a first polymer binder; and a porous coating layer formed on the top surface of the conductive material-coating layer and comprising a second polymer binder. Also, the present invention provides a secondary battery and a cable-type secondary battery comprising the electrode.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 7, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Jang-Hyuk Hong, Hye-Ran Jung, Je-Young Kim, Jong-Hun Kim
  • Patent number: 9577299
    Abstract: An air cell includes a positive electrode and a negative electrode, and an outer frame member located at outer peripheries of the positive electrode and the negative electrode. The positive electrode and the outer frame member are integrally joined together. An assembled battery includes a plurality of air cells, the air cells being stacked on top of each other. This configuration can increase mechanical strength and improve sealing performance for an electrolysis solution in the positive electrode. In addition, a reduction in thickness of the entire air cell can be achieved so that the assembled battery suitable for use in a vehicle can be provided.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 21, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshiko Tsukada, Atsushi Miyazawa, Mori Nagayama, Yasuhiro Numao