Patents Examined by Ling Xu
  • Patent number: 7838105
    Abstract: Disclosed is a microstructure comprising an aluminum anodized film bearing through micropores, wherein a surface of the microstructure is covered with a protective film for preventing hydration of the aluminum anodized film. The microstructure may be used as a porous alumina membrane filter excellent in filtration rate and its stability with time.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: November 23, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Hatanaka, Tadabumi Tomita, Yoshinori Hotta, Akio Uesugi
  • Patent number: 7833628
    Abstract: A coating structure with an anti-reflection function and an anti-electromagnetic wave function, including an anti-reflection coating structure, an anti-electromagnetic wave coating structure, a third transparent substrate, and two adhesive layers respectively disposed between the anti-reflection coating structure and the third transparent substrate and between the third transparent substrate and the anti-electromagnetic wave coating structure. The anti-reflection coating structure has a first transparent substrate and an anti-reflection coating module formed on the first transparent substrate. The anti-electromagnetic wave coating structure has a second transparent substrate and an anti-electromagnetic wave coating module formed on the second transparent substrate. The third transparent substrate is disposed between the anti-reflection coating structure and the anti-electromagnetic wave coating structure.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: November 16, 2010
    Assignee: Innovation & Infinigy Global Corp.
    Inventors: Cheng-Chieh Chang, Shiu-Feng Liu, Pi-Jui Kuo
  • Patent number: 7833586
    Abstract: A thermally sprayed alumina-based coating is deposited onto a thermal barrier coating to provide an article such as a turbine engine component with both CMAS mitigation and antifouling. The alumina-based coating increases a melting point of the CMAS to a temperature greater than an operating temperature of the turbine engine component. The surface roughness of the thermally sprayed alumina based coating in less than 4.0 micrometers to 0.75 micrometers. The alumina based coatings include at least 60 weight percent alumina based on a total weight of the alumina-based coating.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventor: Joshua L. Margolies
  • Patent number: 7829187
    Abstract: A mold for an optical plate includes a first core having a first surface; a second core opposite to the first core to form a molding space and having a second surface, the first surface and the second surface defining the molding space; and a specular layer formed on at least one of the first surface or the second surface.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: November 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Tae-seok Kim
  • Patent number: 7824781
    Abstract: A metal phosphate composite having a composition represented by the formula M1xM21-x(HwPyOz) (wherein M1 represents at least one element selected from the group consisting of tin, titanium, zirconium, silicon, and germanium, M2 represents an element having a valence of 3, and x, w, y, and z satisfy the following relationship, 0.5?x<1, 0?w, 2<y<10, and 0<z<35).
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: November 2, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Hiroki Fujita, Yosuke Sato, Yuki Bessho
  • Patent number: 7824765
    Abstract: A silicon carbide-based porous article comprising silicon carbide particles as an aggregate, metallic silicon and an aggregate derived from siliceous inorganic particles to form pores through volume shrinkage by heat treatment, wherein the porosity is 45 to 70%, and the average pore diameter is 10 to 20 ?m is provided. Also provided is a method for producing a silicon carbide-based porous article, comprising; adding inorganic particles to form pores through volume shrinkage by heat treatment to a raw-material mixture containing silicon carbide particles and metallic silicon, then forming into an intended shape, calcinating and firing the resultant green body, forming pores through volume shrinkage of the inorganic particles by heat treatment, and the shrunk inorganic particles being present as an aggregate in the porous article.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: November 2, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Takuya Hiramatsu, Kenji Morimoto
  • Patent number: 7824535
    Abstract: A microstructure includes an anodized aluminum layer that has on a surface thereof micropores, at least some of which contain a catalyst, in a micropore array with a degree of ordering of at least 40%. A method of manufacturing the microstructure includes anodizing an aluminum member to form on its surface an anodized layer having micropores, removing the aluminum member, and supporting a catalyst on at least part of the anodized layer. The microstructure is excellent in heat resistance.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 2, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Hatanaka, Tadabumi Tomita, Yoshinori Hotta, Akio Uesugi
  • Patent number: 7824777
    Abstract: “Corrosion” performance of an optical filter is enhanced when a relatively thick zinc-based film functions as a seed layer for a subsequently formed silver-based film. At least two pairs of dielectric and metallic layers are included within the optical filter, where the zinc-based film is a second film of the dielectric layer and where the silver-based film is the metallic layer. The zinc-based film has a zinc content of at least 80 percent and has a thickness of at least 15 nm. In order to further improve the corrosion performance, gold may be incorporated into the silver-based film.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 2, 2010
    Assignee: Southwall Technologies, Inc.
    Inventors: Chris H. Stoessel, Andrew Wahl, Roland Thielsch, Matthew Coda, Julius Kozak, Richard T. Wipfler, Lee Boman
  • Patent number: 7820295
    Abstract: Disclosed herein are a fluorine-doped tin oxide (FTO) transparent conductive film glass used for defogging purposes comprising a glass layer, a dielectric barrier layer, a functional layer, a metal electrode layer, a plastic intermediate layer, and a glass layer, stacked in this sequential order, in which the functional layer comprises an FTO transparent conductive film having a molar ratio of F to Sn in the range of 0.5 to 2, mainly including a (301) crystal plane and being formed by a spray coating method, and a method of fabricating the same.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: October 26, 2010
    Assignees: Hyundai Motor Company, Korea Institute of Ceramic Engineering and Technology
    Inventors: Sang Hak Kim, Chang Yeol Kim, Doh Hyung Riu, Seung Hun Huh, Kwang Youn Cho, Chul Kyu Song
  • Patent number: 7820266
    Abstract: A method of manufacturing a protective cover (24) for a component of a vehicle includes assembling multiple layers to form a charge (22). The charge (22) is formed within a mold (50) of the component to form a multi-contoured laminate (58). The protective cover (24) is separated from the multi-contoured laminate (58). A method of forming a down stream part structure or mold (167) for a component includes assembling multiple layers to form a charge (78). The charge (78) is formed within an original mold of the component to form a multi-contoured laminate (76). A splash is separated from the multi-contoured laminate (76). A protective cover, such as the cover (24), is for a vehicle component and includes a contour holding layer (36) and a protective laminate layer (34). The contour holding layer (36) and the protective laminate layer (34) are formed within a mold of the vehicle component to form the protective cover.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 26, 2010
    Assignee: The Boeing Company
    Inventors: Jeffrey T. Wirrick, Michael J. Cloud
  • Patent number: 7803456
    Abstract: Glass-bonded ceramics made of non-microcracked non-oxide or oxide ceramic particles which are bound together by glass into a unitary non-microcracked structure are disclosed. Such ceramics are suitable for use in substrates and filters, such as a diesel particulate filter.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 28, 2010
    Assignee: Corning Incorporated
    Inventors: Yanxia Lu, Robert Michael Morena
  • Patent number: 7799417
    Abstract: A Si—SiC based fired body includes a plurality of silicon carbide (SiC) particles serving as an aggregate, and silicon (Si) which serves as a binder and which is filled into gaps between the above-described silicon carbide particles, wherein the maximum particle diameter of the above-described silicon carbide particles is 0.5 mm or more, the content of silicon is 5 to 40 percent by mass, and the porosity is 0 to 5%. Preferably, the Si—SiC based fired body is in a thick-walled shape having a thickness of 20 to 200 mm.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: September 21, 2010
    Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.
    Inventors: Tsuneo Komiyama, Osamu Yamakawa, Seiichi Hori
  • Patent number: 7790274
    Abstract: A layered panel structure featuring a first layer formed of non-thermoformable material, having opposite faces, a thickness T as measured between its opposite faces, and an effective layer density d, and a second layer formed of thermoformable material having opposite faces, with one face in the second layer being thermally bonded to one face in the first layer, and with the second layer having a thickness t, as measured between its opposite faces which is smaller than T, and an effective layer density D which is greater than d. The thermal bond between the layers is formed, during thermoforming of the panel structure, by a melt and flow of resin contained in the thermoformable layer material.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: September 7, 2010
    Assignee: High Impact Technology, LLC
    Inventors: Russell A. Monk, Lance A. Hicks
  • Patent number: 7790289
    Abstract: The invention relates to a vapor-deposition material for the production of optical layers of medium refractive index which comprises aluminum oxide and gadolinium oxide, dysprosium oxide and/or ytterbium oxide, to a process for the preparation thereof, and to the use thereof.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: September 7, 2010
    Assignee: Merck Patent GMBH
    Inventors: Martin Friz, Reiner Dombrowski, Uwe Anthes
  • Patent number: 7785520
    Abstract: A honeycomb containing a thermoplastic material, high modulus fiber and thermoset resin has process steps of fracturing the thermoset resin, bending, molding or forming the honeycomb in a mold or over a form, heating to allow flow of thermoplastic material and cooling of the honeycomb to retain the shape of the mold or form.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 31, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Subhotosh Khan, Gary Lee Hendren, Mikhail R. Levit
  • Patent number: 7785722
    Abstract: A turbine engine component is provided which has a substrate and a thermal barrier coating applied over the substrate. The thermal barrier coating comprises alternating layers of yttria-stabilized zirconia and a molten silicate resistant material. The molten silicate resistant outer layer may be formed from at least one oxide of a material selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, indium, zirconium, hafnium, and titanium or may be formed from a gadolinia-stabilized zirconia. If desired, a metallic bond coat may be present between the substrate and the thermal barrier coating system. A method for forming the thermal barrier coating system of the present invention is described.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: August 31, 2010
    Assignee: United Technologies Corporation
    Inventors: Melvin Freling, Kevin W. Schlichting, Michael J. Maloney, David A. Litton, John G. Smeggil, David B. Snow
  • Patent number: 7785714
    Abstract: An extreme low resistivity light attenuation anti-reflection coating structure with a surface protective layer includes a substrate, a coating module, and a composed protection coating layer. The coating module is formed on a front surface of the substrate. The coating module is composed of a plurality of silicon carbide compound coating layers and a plurality of metal coating layers that are alternately stacked with each other. The composed protection coating layer is formed on the coating module.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 31, 2010
    Assignee: Innovation & Infinity Global Corp.
    Inventors: Cheng-Chieh Chang, Shiu-Feng Liu, Pi-Jui Kuo
  • Patent number: 7781049
    Abstract: A hydrogen transport membrane in which a porous ceramic support supports a dense layer of palladium or an alloy of palladium serving as a hydrogen transport material. The ceramic support has a first porous layer and a second porous layer. The first porous layer has a first thickness of about 1 mm, a first set of pores have a first average pore size of between about 10 microns and about 50 microns and a first porosity of about 40 percent by volume. The second porous layer has a second thickness of about 3 microns, a second set of pores having a second average pore size of between about 10 nanometers and about 100 nanometers and a second porosity of about 50 percent by volume. The dense layer has a thickness of about 3 microns.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: August 24, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Prasad S. Apte, Joseph Michael Schwartz, Shawn W. Callahan
  • Patent number: 7781053
    Abstract: Provided are a silicon carbide-based porous article comprising silicon carbide particles as an aggregate, metallic silicon and an aggregate derived from organometallic compound particles to form pores through volume shrinkage due to decomposition/conversion by heat treatment; and a method for producing the silicon carbide-based porous article, comprising, adding organometallic compound particles to form pores through volume shrinkage due to decomposition/conversion by heat treatment to a raw-material mixture containing silicon carbide particles and metallic silicon, then forming into an intended shape, calcinating and/or firing the resultant green body, forming pores through volume shrinkage due to decomposition/conversion of the organometallic compound particles, and the decomposed/converted substance of the organometallic compound particles being present as an aggregate in the porous article.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 24, 2010
    Assignee: NGX Insulators, Inc.
    Inventors: Takuya Hiramatsu, Shinji Kawasaki
  • Patent number: 7776143
    Abstract: A composition comprising a glass-forming binder component and a particulate corrosion resistant component. The particulate corrosion resistant component comprises corrosion resistant particulates having: a CTEp of at least about 4 and being solid at a temperature of about 1300° F. (704° C.) or greater; and a maximum median particle size defined by one of the following formulas: (a) for a CTEp of 8 or less, an MP equal to or less than (4.375×CTEp)?10; and (b) for a CTEp of greater than 8, an Mp equal to or less than (?4.375×CTEp)+60, wherein CTEp is the average CTE of the corrosion resistant particulates and wherein Mp is the median equivalent spherical diameter (ESD), in microns, of the corrosion resistant particulates. Also disclosed is an article comprising a turbine component comprising a metal substrate and a corrosion resistant coating overlaying the metal substrate, as well as a method for forming at least one layer of the corrosion resistant coating adjacent to the metal substrate.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: August 17, 2010
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Michael James Weimer