Patents Examined by Lisa Caputo
  • Patent number: 10429328
    Abstract: A microelectromechanical systems-based calorimetric device includes first and second micromixers and first and second thermally-isolated microchambers. A first solution including a sample and a reagent is introduced to the first microchamber via the first micromixer, and a second solution including a sample and a buffer is introduced to the second microchamber via the second micromixer. A thermopile measures the differential temperature between the first microchamber and the second microchamber and outputs a voltage representative of the difference. The output voltage can be used to calculate reaction parameters.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: October 1, 2019
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Qiao Lin, Bin Wang
  • Patent number: 10274511
    Abstract: A capacitive accelerometer including: at least one additional fixed capacitor electrode with a plurality of additional fixed capacitive electrode fingers extending along the sensing direction. The proof mass comprises a plurality of moveable capacitive electrode fingers extending from the proof mass along the sensing direction and arranged to interdigitate with the plurality of additional fixed capacitive electrode fingers of the at least one additional fixed capacitor electrode. A means is provided for applying a voltage to the at least one additional fixed capacitor electrode to apply an electrostatic force to the plurality of moveable capacitive electrode fingers that acts to pull the proof mass towards the at least one further fixed capacitor electrode and thereby reduces the lateral spacings between the movable capacitive electrode fingers of the proof mass and the first and second sets of fixed capacitive electrode fingers that provide electrostatic forces for sensing purposes.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 30, 2019
    Inventor: Alan Malvern
  • Patent number: 10267582
    Abstract: A system, device, and method for measuring the temperature of a chambered projectile within a firearm are provided. A test ammunition round may include a projectile, a sleeve, and a case including a first end coupled to sleeve, and a second end coupled to the projectile. A thermocouple may be located within the projectile, and an electronic coupler may be coupled to the thermocouple, and extends through the case and the sleeve and exits the sleeve through a slot for coupling to a data acquisition system.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: April 23, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Stefan L. Englert
  • Patent number: 10254178
    Abstract: Techniques for estimating ambient temperature are described herein. Temperature data may be received from a first sensor of a computing device. Temperature data may be received from a second sensor of a computing device. The ambient temperature may be estimated based on the first temperature data in relation to the second temperature data.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 9, 2019
    Assignee: Intel Corporation
    Inventors: Mark Carbone, Paul Karayacoubian
  • Patent number: 10254172
    Abstract: A temperature sensor includes a temperature sensitive element, a sheath portion, a surrounding portion, and a holding member. This temperature sensor has a void formed forward of a temperature sensitive body. When the void is projected in an axial direction of the surrounding portion from a forward end side of the surrounding portion, the void contains at least a forward end surface of the temperature sensitive body.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: April 9, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Akio Mori, Tatsuya Suzuki, Toshinori Nishi, Seiji Oya, Toshiya Oya
  • Patent number: 10254176
    Abstract: An apparatus includes a thermistor having a variable resistance with a first dependence on absolute temperature. The apparatus includes a reference resistor having a resistance with a second dependence on absolute temperature, the second dependence being less than or having opposite polarity to the first dependence. The reference resistor includes a switched-capacitor circuit. The apparatus includes a node coupled between the thermistor and the reference resistor. The node is configured to provide a signal indicative of absolute temperature based on the variable resistance and the reference resistance. The signal may be strain-invariant, proportional to a reference voltage, and indicative of a ratio of the variable resistance to the reference resistance. The apparatus may include a feedback circuit configured to maintain the node at a predetermined voltage level.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: April 9, 2019
    Assignee: Silicon Laboratories Inc.
    Inventors: Aaron J. Caffee, Jeffrey L. Sonntag
  • Patent number: 10247685
    Abstract: Disclosed herein are a high-temperature structure for measuring properties of a curved thermoelectric device, which is capable of precisely measuring the properties of a medium-temperature curved thermoelectric device that is applied to a tube-type waste heat source and is used in research, and a system and a method for measuring the properties using the same. The high-temperature structure may include a plurality of rod-shaped cartridge heaters, and a heating element having a surface that is a curved surface coming into contact with a lower end of the curved thermoelectric device, having a plurality of holes for accommodating the plurality of cartridge heaters, and directly heating the lower end of the curved thermoelectric device.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 2, 2019
    Inventors: Sang Hyun Park, Chung-Yul Yoo, Hong Soo Kim, Min Soo Suh, Dong Kook Kim, Byung jin Cho
  • Patent number: 10240955
    Abstract: A fluid flow meter can include a sensor capable of transmitting a transmit signal to propagate, at least partially, through a fluid in a pipe and receiving a respective receive signal. The fluid flow meter can include a memory storing computer code instructions and a plurality of pipe type signatures associated with a plurality of pipe types. Each pipe type signature of a respective pipe type of the plurality of pipe types can include one or more characteristics of receive signals associated with that pipe type. The fluid flow meter can also include a processor communicatively coupled to the sensor and to the memory. When executing the computer code instructions, the processor can determine one or more signal features of the receive signal, and identify a pipe type of the pipe based on the one or more signal features of the receive signal and the plurality of pipe type signatures.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 26, 2019
    Assignee: Reliance Worldwide Corporation
    Inventors: Brian Gestner, Thea Knudsen, Francis M. Mess, Jeffrey L. Leaders
  • Patent number: 10234477
    Abstract: Systems and methods are described herein for detecting and measuring inertial parameters, such as acceleration. In particular, the systems and methods relate to vibratory inertial sensors implementing time-domain sensing techniques. Within a composite mass sensor system, a sense mass may oscillate at a frequency different from its actuation frequency, allowing flexibility when integrating the sensor into drive systems without sacrificing sensitivity.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 19, 2019
    Assignee: Google LLC
    Inventors: Ozan Anac, Xiaojun Huang
  • Patent number: 10234338
    Abstract: A transducer apparatus comprises a transducer housing, a tube as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. The tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: March 19, 2019
    Inventors: Alfred Rieder, Hao Zhu, Michael Wiesmann
  • Patent number: 10228296
    Abstract: Methods may include emplacing an emulsion into an annular region of a Taylor-Couette (TC) device; flowing the emulsion through the annular region created by a first annular surface and a second annular surface; contacting one or more shear sensors disposed on a surface of the annular region with the flowing emulsion, wherein contact with the one or more shear sensors generates a signal that scales with shear stress exerted by the flowing emulsion, and determining one or more of wall shear stress from the signal obtained from the one or more shear sensors. Methods may also include determining the apparent viscosity of the fluid composition from the stress measured on the wall of the TC device.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: March 12, 2019
    Inventors: Dingzheng Yang, Dmitri Eskin, Shawn David Taylor
  • Patent number: 10228319
    Abstract: Some aspects of the present disclosure feature a system for sensing a change in environment comprising a MMR sensor and a reader. The MMR sensor is configured to be disposed in the environment. The MMR sensor comprises a magnetic bias layer, a resonator, a spacer, and an environmental change receptor. The reader is configured to measure a frequency characteristic of the MMR sensor after the environmental variable changes and the change to the environmental variable is evaluated based on the frequency characteristic.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: March 12, 2019
    Inventors: Richard L. Rylander, Andrew P. Bonifas, David P. Erickson, Jia Hu, Stephen J. Willett, Chaodi Li, Orlin B. Knudson
  • Patent number: 10215643
    Abstract: There are many industrial applications in which non-contact temperature sensing is useful for increasing production speed and quality, such as printing, laminating, extrusion, and metal forming. Disclosed is a non-contact temperature determining apparatus which uses two wide wavelength bands integrating sensors to determine the radiance ratio of a target and thereby determine a corresponding temperature of the target. Also disclosed is a non-contact temperature determining apparatus in which a beam splitter passes one wide wavelength band to a sensor and reflects another distinct wide wavelength band to another sensor from which temperature can be determined. A disclosed embodiment of the dual waveband temperature detector improves upon traditional and currently available ratio pyrometers by further reducing the cost of the system, making installation and use easier, and improving temperature detection for low temperature industrial applications.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 26, 2019
    Assignee: Exergen Corporation
    Inventors: Alexander Stein, Francesco Pompei
  • Patent number: 10214396
    Abstract: The present invention generally relates to lifting gears such as cranes which use ropes such as high-strength fiber ropes. The invention in particular relates to a device for determining the discard state of such rope in use on such lifting gears, comprising a detection device for detecting at least one rope utilization parameter influencing the discard state and an evaluation unit for evaluating the rope utilization parameter and for providing a discard signal in dependence on the rope utilization parameter evaluation. According to the invention the detection unit has at least one detecting means for detecting environmental influences on the rope, which can be evaluated by evaluation devices to recognize the discard state.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: February 26, 2019
    Assignee: Liebherr-Components Biberach GMBH
    Inventors: Ilaka Mupende, Horst Zerza
  • Patent number: 10215647
    Abstract: Methods and systems accurately determine an analyte concentration in a fluid sample. In an example embodiment, a receiving port receives a test sensor. The test sensor includes a fluid-receiving area for receiving a fluid sample. The fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the fluid sample. The test sensor has a test-sensor temperature and the reagent has a reagent temperature. A measurement system measures the reaction between the reagent and the analyte. A temperature-measuring system measures the test sensor temperature when the test sensor is received into the receiving port. A concentration of the analyte in the fluid sample is determined according to the measurement of the reaction and the measurement of the test sensor temperature. A diagnostic system determines an accuracy of the temperature-measuring system. The calculation of the analyte concentration may be adjusted according to the accuracy of temperature-measuring system.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: February 26, 2019
    Inventors: Narasinha Parasnis, Hoi-Cheong Steve Sun, Mu Wu
  • Patent number: 10216237
    Abstract: The present disclosure describes one or more systems, methods, routines and/or techniques for thermal management. One or more systems, methods, routines and/or techniques may provide advice or guidance (e.g., to a repair technician) regarding how to perform a hot bond repair, for example, on an aircraft component that has been damaged. The thermal management advisor may provide advice or guidance regarding how to prepare a repair field prior to running a thermal survey. For example, thermal management advisor may recommend a particular heat blanket, a configuration of the heat blanket, placement of various temperature sensors and other preparation guidance. The thermal management advisor may provide advice or guidance regarding how to alter or manage the repair setup during a thermal survey and during the actual curing process. For example, thermal management advisor may recommend particular temperature sensors or areas of the repair field that should be insulated.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: February 26, 2019
    Assignee: The Boeing Company
    Inventors: Michael W. Evens, Joseph Lawrence Hafenrichter, Joel Patrick Baldwin, Ronald G. Turner, Megan N. Watson
  • Patent number: 10209116
    Abstract: The measuring cup includes numerous embodiments configured for a user to precisely determine the cup contents without need to lift the cup to one's eye level or to lower the eye level to the level of the cup contents. The various embodiments include folding cups; cups having transparent passages in the wall; cups having adjustably positionable bottoms; cups having level indicator rods in the cup interior extending upward from the cup bottom; cups having one or more filaments extending across the cup interior; cups having rigid level indicators spanning the cup interior; cups having adjustably positionable level indicator tabs therein; cups having buoyant level indicator tabs adjustably positionable in the cup interior; and cups having removable clip-on scales extending down along the interior of the cup wall, the scales having a plurality of attachment points for the removable attachment of a level indicator tab at a desired attachment point.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: February 19, 2019
    Assignee: King Saud University
    Inventors: Mohd Aftab Alam, Fahad Ibrahim Al-Jenoobi, Abdullah M. Al-Mohizea
  • Patent number: 10209120
    Abstract: A level sender for a tank includes a sensor device. A driven member is associated with a float assembly. The sensor device is adapted to determine a level of fluid within the tank based on an angular position of the driven member. A float arm is coupled to a float at a first end and is coupled to the driven member at a second end.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 19, 2019
    Inventors: Albert J. Boecker, Garrett M. Tetil
  • Patent number: 10209106
    Abstract: An electronic device may be provided with environmental sensors. Environmental sensors may include one or more environmental sensor components and one or more acoustic components. Acoustic components may include a speaker or a microphone. Environmental sensor components may include a temperature sensor, a pressure sensor, a humidity sensor, a gas sensor, or other sensors or combinations of sensors for sensing attributes of the environment surrounding the device. The environmental sensor may have an enclosure with an opening. The enclosure may be formed from a rigid support structure and a portion of a printed circuit. The opening may be formed in the rigid support structure or the printed circuit. The opening in the enclosure for the environmental sensor may be aligned with an opening in an outer structural member for the device. The outer structural member may be a housing structure or a cover layer for a device display.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: February 19, 2019
    Assignee: Apple Inc.
    Inventor: Henry H. Yang
  • Patent number: 10209168
    Abstract: A measuring instrument for thermogravimetrically determining the moisture content of a material, which includes a base (12), configured as a balance, with a base surface (22), and a hood (14) pivotably connected to the base. The hood has a weighing chamber lid (50), weighing chamber walls (52-56) and a heating element (44). The hood consists of an electronics module (36) that includes the heating element and an electronic power unit, and of a mechanical module (48) that includes the weighing chamber lid and all of the weighing chamber walls. The mechanical module (48) is rigidly and reversibly coupled to the electronics module so that the heating element, protrudes from a main body (42) of the electronics module and rises through a corresponding opening (58) in the rearward weighing chamber wall (56), with the main body being pivotably connected to the base and surrounding the electronic power unit.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: February 19, 2019
    Inventors: Olaf Dudda, Wilfried Spannagel, Daniel Faerger