Patents Examined by Lisa Chau
  • Patent number: 11972885
    Abstract: A magnetic material includes a grain compact in which metal grains having oxide films are compacted, wherein the metal grains are constituted by Fe—Si-M soft magnetic alloy (where M represents a metal element that oxidizes more easily than iron), the metal grains in the grain compact are mutually bonded with adjacent metal grains by inter-bonding of their oxide films, and at least some of this bonding of oxide films takes the form of bonding of crystalline oxides, or preferably at least some of the bonding of oxides is based on continuous lattice bond. A coil component has a coil on an interior or surface of an element body wherein the element body uses the magnetic material.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 30, 2024
    Assignee: TAIYO YUDEN CO., LTD
    Inventors: Kenji Otake, Hitoshi Matsuura
  • Patent number: 11955205
    Abstract: A high-temperature bimetal capable of being inhibited from considerably shifting from an original position when the temperature has fallen to an ordinary temperature is provided. This high-temperature bimetal (1) includes a high thermal expansion layer (2) made of austenitic stainless steel and a low thermal expansion layer (3) made of a thermosensitive magnetic metal having a Curie point and bonded to the high thermal expansion layer. The high-temperature bimetal is employed over both a high temperature range of not less than the Curie point and a low temperature range of less than the Curie point, while an upper limit of operating temperatures in the high temperature range of not less than the Curie point is at least 500° C.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 9, 2024
    Assignee: PROTERIAL, LTD.
    Inventors: Yoshimitsu Oda, Masaaki Ishio
  • Patent number: 11908500
    Abstract: A multilayer exchange spring recording media consists of a magnetically hard magnetic storage layer strongly exchange coupled to a softer nucleation host. The strong exchange coupling can be through a coupling layer or direct. The hard magnetic storage layer has a strong perpendicular anisotropy. The nucleation host consists of one or more ferromagnetic coupled layers. For a multilayer nucleation host the anisotropy increases from layer to layer. The anisotropy in the softest layer of the nucleation host can be two times smaller than that of the hard magnetic storage layer. The lateral exchange between the grains is small. The nucleation host decreases the coercive field significantly while keeping the energy barrier of the hard layer almost unchanged. The coercive field of the total structure depends on one over number of layers in the nucleation host. The invention proposes a recording media that overcomes the writeability problem of perpendicular recording media.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: February 20, 2024
    Inventor: Dieter Suess
  • Patent number: 11869692
    Abstract: A magnetic material includes a soft magnetic metal grain containing Fe, and a multilayer oxide film covering the surfaces of the soft magnetic metal grain. The multilayer oxide film has a first oxide layer of crystalline nature containing Fe, and a second oxide layer of amorphous nature containing Si. In an embodiment, the silicon oxide film of amorphous nature is formed by dripping, divided into multiple sessions, a treatment solution containing TEOS (tetraethoxy silane), ethanol, and water into a mixed solution containing the soft magnetic metal grain, ethanol, and ammonia water, to mix the solutions.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 9, 2024
    Assignee: TAIYO YUDEN CO., LTD
    Inventors: Yoko Orimo, Xinyu Li, Shinsuke Takeoka
  • Patent number: 11842755
    Abstract: A multilayer exchange spring recording media consists of a magnetically hard magnetic storage layer strongly exchange coupled to a softer nucleation host. The strong exchange coupling can be through a coupling layer or direct. The hard magnetic storage layer has a strong perpendicular anisotropy. The nucleation host consists of one or more ferromagnetic coupled layers. For a multilayer nucleation host the anisotropy increases from layer to layer. The anisotropy in the softest layer of the nucleation host can be two times smaller than that of the hard magnetic storage layer. The lateral exchange between the grains is small. The nucleation host decreases the coercive field significantly while keeping the energy barrier of the hard layer almost unchanged. The coercive field of the total structure depends on one over number of layers in the nucleation host. The invention proposes a recording media that overcomes the writeability problem of perpendicular recording media.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: December 12, 2023
    Inventor: Dieter Suess
  • Patent number: 11756584
    Abstract: The magnetic tape cartridge includes a magnetic tape, and a cartridge reel, in which, in the magnetic tape, a minimum winding deviation occurrence load measured after the magnetic tape is rewound around the cartridge reel by applying a tension of 0.20 N in a longitudinal direction of the magnetic tape is 200 N or less.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 12, 2023
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 11538494
    Abstract: In the magnetic recording and reproducing device, a distal end width of the first magnetic pole in the recording element is substantially the same as a distal end width of the second magnetic pole; the reproducing element width of the reproducing element is equal to or less than 0.8 ?m; and in the magnetic recording medium, a number distribution A of equivalent circle diameters of a plurality of bright areas in a binarized image of a secondary electron image obtained by imaging a surface of the magnetic layer with a scanning electron microscope at an acceleration voltage of 5 kV, and a number distribution B of equivalent circle diameters of a plurality of dark areas in a binarized image of a secondary electron image obtained by imaging the surface of the magnetic layer with a scanning electron microscope at an acceleration voltage of 2 kV satisfy predetermined number distribution, respectively.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: December 27, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Atsushi Musha, So Matsuyama, Norihito Kasada
  • Patent number: 11488760
    Abstract: An electronic component includes an element body made of a composite material of a resin material and metal powder. A plurality of particles of the metal powder are exposed from the resin material and make contact with one another on the outer surface of the element.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 1, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Keita Muneuchi, Eiji Iso, Isao Ida, Kenichi Araki, Noriko Shimizu, Takashi Tomohiro
  • Patent number: 11488744
    Abstract: A molded cable comprises a conductor, an insulation inner layer, an insulation outer layer, and a resin molded body. The insulation inner layer comprises a crosslinked ethylene resin composition and is provided an outer circumference of the conductor. The insulation outer layer comprises a crosslinked thermoplastic polyurethane composition and is provided on an outer circumference of the insulation inner layer. Arithmetic average roughness (Ra) of a surface of the insulation outer layer is 5 ?m to 100 ?m. The resin molded body coats an exposed end portion of the conductor and an end portion of the insulation outer layer at a side of the exposed end portion of the conductor. The resin molded body is fused to the insulation outer layer.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: November 1, 2022
    Assignee: Hitachi Metals, Ltd.
    Inventors: Keisuke Sugita, Akinari Nakayama
  • Patent number: 11482249
    Abstract: A magnetic tape in which a minimum value of TDStens among five TDStens measured respectively at a temperature of 16° C. and a relative humidity of 20%, a temperature of 16° C. and a relative humidity of 80%, a temperature of 26° C. and a relative humidity of 80%, a temperature of 32° C. and a relative humidity of 20% and a temperature of 32° C. and a relative humidity of 55% is 1.43 ?m/N or more, a ratio of a change of TDStens to a change of a relative humidity obtained from the five TDStens is 0.005 ?m/N/% or less, and a ratio of a change of TDStens to a change of a temperature obtained from the five TDStens is 0.020 ?m/N/° C. or less.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 25, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Yuto Murata, Yusuke Kaneko
  • Patent number: 11437065
    Abstract: The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which an isoelectric point of a surface zeta potential of the magnetic layer after pressing the magnetic layer at a pressure of 70 atm is equal to or less than 3.8.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 6, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Eiki Ozawa, Norihito Kasada
  • Patent number: 11396138
    Abstract: A tension member with at least one loop made from fiber-reinforced plastic, which tension member has a plurality of fibers that run substantially parallel to each other, so that the loop is formed by the plurality of fibers, wherein a first group of fibers is turned over along the loop in a first turning direction, while a second group of fibers is turned over along the loop in a second turning direction, which is opposed to the first turning direction. Some of the turned-over fibers of both groups end in a different distance from the vertex of the loop than others of the turned-over fibers, so that a cross-section of the tension member that results from the respective number of fibers that run approximately parallel to each other outside the turning-over area of the fibers approximately continuously decreases until it reaches the cross-section size of the tension member.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 26, 2022
    Assignee: TECHNISCHE UNIVERSITAT BERLIN
    Inventors: Bernd Zwingmann, Yue Liu, Mike Schlaich
  • Patent number: 11361789
    Abstract: In a magnetic recording medium, a number distribution A of a plurality of bright regions, based on equivalent circle diameters thereof, in a binarized image of a secondary electron image obtained by imaging a surface of the magnetic layer by a scanning electron microscope at an acceleration voltage of 5 kV and a number distribution B of a plurality of dark regions, based on equivalent circle diameters thereof, in a binarized image of a secondary electron image obtained by imaging a surface of the magnetic layer by a scanning electron microscope at an acceleration voltage of 2 kV respectively satisfy a predetermined number distribution.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: June 14, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 11244782
    Abstract: An amorphous alloy magnetic core including a layered body in which amorphous alloy thin strips are layered one on another, the layered body having one end face and another end face in a width direction of the amorphous alloy thin strips, an inner peripheral surface and an outer peripheral surface orthogonal to a layering direction of the amorphous alloy thin strips, and a hole passing through from a part of the one end face as a starting point, the width direction corresponding to a depth direction of the hole.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 8, 2022
    Assignee: HITACHI METALS, LTD.
    Inventors: Hitoshi Kodama, Kengo Takahashi, Daichi Azuma
  • Patent number: 11138997
    Abstract: A multilayer exchange spring recording media consist of a magnetically hard magnetic storage layer strongly exchange coupled to a softer nucleation host. The strong exchange coupling can be through a coupling layer or direct. The hard magnetic storage layer has a strong perpendicular anisotropy. The nucleation host consists of one or more ferromagnetic coupled layers. For a multilayer nucleation host the anisotropy increases from layer to layer. The anisotropy in the softest layer of the nucleation host can be two times smaller than that of the hard magnetic storage layer. The lateral exchange between the grains is small. The nucleation host decreases the coercive field significantly while keeping the energy barrier of the hard layer almost unchanged. The coercive field of the total structure depends on one over number of layers in the nucleation host. The invention proposes a recording media that overcomes the writeability problem of perpendicular recording media.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 5, 2021
    Inventor: Dieter Suess
  • Patent number: 11133031
    Abstract: A multilayer exchange spring recording media consists of a magnetically hard magnetic storage layer strongly exchange coupled to a softer nucleation host. The strong exchange coupling can be through a coupling layer or direct. The hard magnetic storage layer has a strong perpendicular anisotropy. The nucleation host consists of one or more ferromagnetic coupled layers. For a multilayer nucleation host the anisotropy increases from layer to layer. The anisotropy in the softest layer of the nucleation host can be two times smaller than that of the hard magnetic storage layer. The lateral exchange between the grains is small. The nucleation host decreases the coercive field significantly while keeping the energy barrier of the hard layer almost unchanged. The coercive field of the total structure depends on one over number of layers in the nucleation host. The invention proposes a recording media that overcomes the writeability problem of perpendicular recording media.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 28, 2021
    Inventor: Dieter Suess
  • Patent number: 11107878
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 31, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 11105022
    Abstract: A carbon fiber bundle includes single-fibers 40% or more of which have a quasi-oval cross section perpendicular to a fiber direction and meet both Equations (1) and (2): 1.03?La/Lb?1.20 (1) and 1.05?Ld/Lc?1.25 (2), wherein La is length of a long axis defined as a line segment connecting two points farthest away from each other on a circumference of the quasi-oval cross section of a single-fiber; Lb is length of a short axis defined as a line segment extending perpendicular to the long axis, passing through a midpoint of the long axis, and connecting two points on the circumference; and Lc and Ld are defined as length of a shorter one and that of a longer one, respectively.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: August 31, 2021
    Assignee: Toray Industries, Inc.
    Inventors: Haruki Okuda, Takayuki Yomo, Fumihiko Tanaka
  • Patent number: 11074934
    Abstract: HAMR media with a magnetic recording layer having a reduced Curie temperature and methods of fabricating the HAMR media are provided. One such HAMR medium includes a substrate, a heat sink layer on the substrate, an interlayer on the heat sink layer, and a multi-layer magnetic recording layer on the interlayer. In such case, the multi-layer magnetic recording layer includes a first magnetic recording layer including an alloy selected from FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 27, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Hua Yuan, Antony Ajan, Oleg Krupin, B. Ramamurthy Acharya
  • Patent number: 11046608
    Abstract: The invention relates to an optical fiber preform (20) comprising a primary preform (21) and one or more purified silica-based overclad layers (22) surrounding said primary preform (21), the purified silica-based overclad layers (22) comprising lithium and aluminium, and having a ratio between lithium concentration [Li] and aluminium concentration [Al] satisfying the following inequality: 1×10?3?[Li]/[Al]?20×10?3.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: June 29, 2021
    Assignee: DRAKA COMTEQ BV
    Inventors: Cédric Gonnet, Emmanuel Petitfrere, Laurent Calvo, Olivier Delwal