Patents Examined by Majdi Alsomiri
  • Patent number: 8521385
    Abstract: A method of controlling a torque vectoring mechanism and an associated torque vectoring system are disclosed. The method can distribute torque between a left non-driven wheel and a right non-driven wheel of a vehicle based on a torque control value. The torque control value can be based on a change in yaw moment about a center of gravity of the vehicle. The change in yaw moment can be determined based on a reduction of lateral force on a driven axle due to both longitudinal and lateral slip on the driven wheels.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: August 27, 2013
    Assignee: e-AAM Driveline Systems AB
    Inventors: Gabriel Per Erik Ivar Trönnberg, Simon Ola André Yngve
  • Patent number: 8515597
    Abstract: A required navigation performance (RNP) approach method is described that includes providing a plurality of fixed, predetermined waypoints associated with at least one runway of at least one airport, providing a predetermined plurality of constant radius turnpoints connecting a downwind leg of the runway to a final approach leg of the runway, and assigning one of the constant radius turnpoints to an aircraft capable of flying an RNP approach, the turnpoint selected to provide separation from other approaching aircraft and a landing time for the aircraft.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: August 20, 2013
    Assignee: The Boeing Company
    Inventors: Andrew McDowell, Jeffery Leon Bruce
  • Patent number: 8504283
    Abstract: A host-vehicle risk acquisition device includes a host-vehicle path acquisition portion that acquires a path of a host-vehicle, and an obstacle path acquisition portion that acquires a plurality of paths of an obstacle existing around the host-vehicle. A collision risk acquisition portion acquires an actual collision risk, which is a collision risk between the host-vehicle and the obstacle when the host-vehicle is in a travel state based on the path of the host-vehicle and the plurality of paths of the obstacle. An offset risk acquisition portion acquires an offset risk, which is a collision risk between the host-vehicle and the obstacle in an offset travel state, which is offset from the travel state of the host-vehicle.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: August 6, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuaki Aso, Toshiki Kindo, Masahiro Harada
  • Patent number: 8504260
    Abstract: A method for activating a clutch of a vehicle drive train. A controller of an electronic control unit generates an electrical desired-value signal corresponding to a desired pressure with which the clutch is to be acted upon. The control unit receives from a sensor an electrical actual-value signal which is to correspond to an actual pressure with which the clutch is acted upon. The sensor measures the pressure at a measurement location which is connected via a transfer link to an action location at which the clutch is acted upon with a clutch pressure. The actual-value signal passes through a transfer element having a delay property before it is delivered to the controller.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 6, 2013
    Assignee: GETRAG Getriebe-und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Thorsten Stepper, Joerg Meissner, Ralf Trutschel
  • Patent number: 8494728
    Abstract: A transmission 20 includes an input shaft 12, an output shaft 13, a primary sheave 23 that rotates together with the input shaft 12, a secondary sheave 24 that rotates together with the output shaft 13, and a belt 25 wound around both the primary sheave 23 and the secondary sheave 24. The transmission 20 includes a motor 22 that shifts a transmission ratio by driving a movable sheave 23a of the primary sheave 23. A control device (ECU 5) of the transmission 20 includes a secondary sheave rotation speed sensor 28 that detects rotation of the belt 25, and a control portion 55 of the ECU 5 performs a sheave position control (normal control of the transmission ratio) after rotation of the belt 25 is detected after starting.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: July 23, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Toshio Unno
  • Patent number: 8494711
    Abstract: An automated start/stop system for a vehicle comprises an auto-stop module, a diagnostic module, and an auto-start module. The auto-stop module selectively initiates an auto-stop event and shuts down an engine while the vehicle is running. The diagnostic module selectively diagnoses a fault in a clutch pedal position sensor of the vehicle. The auto-start module, while the vehicle is running and the engine is shut down, selectively initiates an auto-start event after the fault has been diagnosed when current drawn by a starter motor is less than a predetermined maximum starting current.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: July 23, 2013
    Inventors: Awadesh Tiwari, Vijay Shettigar, Amit Kumar, Srinivas B. Chande
  • Patent number: 8490005
    Abstract: Aspects of the disclosed subject matter are directed to a graphical display that provides a visual enhancement in conveying a vehicle reading. In accordance with one embodiment, a method is provided that causes the graphical display to render a border of an instrument with a distinguishing visual attribute. More specifically, the method includes assigning a priority level to an instrument used to convey a vehicle reading. When an abnormal condition is identified, the instrument is assigned an enhanced priority level that corresponds to the abnormal condition. Then, the method causes the graphical display to render the instrument, wherein that border of the instrument is depicted with an enhanced visual attribute indicative of the abnormal condition. In this regard, the enhanced visual attribute distinguishes the instrument from one or more other instruments depicted on the graphical display that are not assigned an enhanced priority level.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 16, 2013
    Assignee: PACCAR Inc
    Inventor: Christopher Tarte
  • Patent number: 8483922
    Abstract: The work vehicle includes a braking device, a lubricant feeding section, and a controlling section. The controlling section configured to execute a first control in which an amount of the lubricant fed to the braking device is controlled based on a temperature of a rotating member of the braking device. The controlling section sets the amount of the lubricant to a predetermined first feed amount when the braking device is in a braking state, calculates the temperature of the rotating member, and makes a decision in the first control, based on the calculated temperature of the rotating member, to change the amount of the lubricant from the first feed amount to a second feed amount, which is smaller than the first feed amount, when the braking device is switched from the braking state to a non-braking state.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: July 9, 2013
    Assignee: Komatsu Ltd.
    Inventors: Kazuki Kure, Kazuyuki Suzuki, Shigeru Yamamoto
  • Patent number: 8483879
    Abstract: A robotic system includes a robot adapted for moving a payload in proportional response to an input force from an operator, sensors adapted for measuring a predetermined set of operator input values, including the input force, and a controller. The controller determines a changing stiffness value of the operator using set of operator input values, and automatically adjusts a level of control sensitivity over the robot using the stiffness value. The input values include the input force, a muscle activation level of the operator, and a position of the operator. A method of controlling the robot includes measuring the operator input values using the plurality of sensors, processing the input values using the controller to thereby calculate the stiffness value, and automatically adjusting the level of control sensitivity over the robot using the stiffness value. A specific operator may be identified, with control sensitivity being adjusted based on the identity.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Dalong Gao, Roland J. Menassa, Robin Stevenson
  • Patent number: 8478474
    Abstract: A diagnostic apparatus and a diagnostic method are provided for a belt squeezing force adjusting mechanism of a continuously variable transmission in which a belt is wound around a primary sheave that receives driving force and a secondary sheave that outputs force to a drive line, and which continuously changes the output rotation speed by adjusting the width of the groove the primary sheave and the secondary sheave by shift control. This diagnostic determines, as a precondition, whether a target control value calculated in shift control is in a low region, and performs a diagnostic on the belt squeezing force adjusting mechanism based on the relationship between an actual control value and the target control value during control to reduce a control value when it is determined that the precondition is satisfied. According to this diagnostic apparatus and diagnostic method, an erroneous diagnosis can be prevented so the diagnostic can be performed accurately.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasunari Matsui, Akira Hino, Shinya Toyoda, Naoto Tanaka
  • Patent number: 8473172
    Abstract: Systems and methods for assisted direct start control are provided. An example method varies engine torque, forward clutch engagement pressure, and wheel brake pressure during a vehicle launch responsive to longitudinal vehicle grade to improve launch performance.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: June 25, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Roger Lyle Huffmaster
  • Patent number: 8457872
    Abstract: The invention relates to a method for managing the flight of an aircraft flying along a trajectory and being subject to an absolute time constraint (on a downstream point) or relative time constraint (spacing with respect to a downstream aircraft), the said aircraft comprising a flight management system calculating a temporal discrepancy to the said time constraint, wherein the said method includes the following steps: the calculation of a distance on the basis of the temporal discrepancy, the modification of the trajectory: if the temporal discrepancy to the time constraint corresponds to an advance, the lengthening of the trajectory by the distance; if the temporal discrepancy to the time constraint corresponds to a delay, the shortening of the trajectory by the distance.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 4, 2013
    Assignee: Thales
    Inventor: Guy Deker
  • Patent number: 8447465
    Abstract: A method of registering a vehicle with a call center of a telematics system may entail turning a key within a vehicle ignition to begin a call from a telematics control module within the vehicle to a server at a telematics call center, connecting the telematics control module within the vehicle to the server at the telematics service center, sending a health check request from the telematics control module within the vehicle to the server at the telematics service center; and receiving a health check confirmation in the telematics control module within the vehicle from the server at the telematics service center. The method may further entail inquiring if such a health check request request-confirmation was successful. The method may also include a call fail counter and a message fail counter to automatically re-initiate a health check request and a successful answer to such a request.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 21, 2013
    Assignees: DENSO International America, Inc., Denso Corporation
    Inventors: Yi Jiang, Hiroaki Shibata, Koji Shinoda, Hyunju Seo, Mustafa Mahmoud, Wan-ping Yang, Thomas Shi
  • Patent number: 8442706
    Abstract: A system and method to facilitate approach of a VTOL aircraft to an offshore facility includes inputting a waypoint for a landing platform of an offshore facility into an aircraft module, inputting an offset distance from the landing platform into the aircraft module, inputting a minimum descent height into an aircraft module, and inputting a final approach inbound course toward the landing platform into the aircraft module.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: May 14, 2013
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Ronald S. Doeppner, Donald W. Fowler, Stephen P. Lee, Lan Hoang, Anil Mehra
  • Patent number: 8442684
    Abstract: A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: May 14, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Oceaneeering Space Systems
    Inventors: Donald R. Davis, Nicolaus A. Radford, Frank Noble Permenter, Michael C. Valvo, R. Scott Askew
  • Patent number: 8437907
    Abstract: In a method for determining a roadway state (STATE) of a roadway on which a vehicle (10) is travelling which has at least one wheel (14) and an acceleration sensor (24) which is assigned to the wheel (14), in order to determine a vertical component of an acceleration of the wheel (14), a characteristic value which is representative of the roadway state (STATE) is determined as a function of a measured signal (AC_VERT) of the acceleration sensor (18).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 7, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Ning Bian, Celine Gamulescu, Andreas Mayer, Thomas Schweiger
  • Patent number: 8428809
    Abstract: A method of valve lift failure detection may include determining first and second intake air pressures in an engine having intake valve lifters that selectively operate intake valves in first and second lift modes. The first intake air pressure may correspond to an intake stroke of a first piston of the engine when the engine is commanded to operate in the first lift mode and the second intake air pressure may correspond to an intake stroke of a second piston of the engine when the engine is commanded to operate in the first lift mode. The method may further include determining a difference between the first and second intake air pressures and diagnosing an intake valve lifter failure when the difference exceeds a predetermined limit.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: April 23, 2013
    Inventors: Alexander J. Roberts, Kenneth J. Cinpinski, Donovan L. Dibble
  • Patent number: 8423183
    Abstract: Disclosed is a method of generating a hip trajectory of a biped walking robot to allow the robot to stably walk on a two-dimensional space without falling down. An angular velocity of a hip of a swinging leg is obtained by measuring the angle/angular velocity of an ankle pitch joint part of a supporting leg in real time when the robot walks on the two-dimensional space, and desired trajectories of the ankle and the hip are generated based on the angular velocity of the ankle of the supporting leg and the angular velocity of the hip of the swinging leg.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho Seong Kwak, Woong Kwon, Kyung Shik Roh
  • Patent number: 8423250
    Abstract: An anti-collision control is provided under circumstances where it is determined that there is a risk of collision between a host vehicle and a preceding vehicle. The anti-collision control utilizes host vehicle information, preceding vehicle information, and surrounding road conditions to determine whether or not a collision with the preceding vehicle can be avoided through a steering operation. If avoidance is determined to be possible, then a shift-hold control is applied to the AT, whereas if avoidance is determined to be impossible, then a down-shift control is applied to the AT.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 16, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yoshito Kondou, Takayuki Miyajima, Atsushi Takeuchi, Yoshiyuki Yasui, Hiroyuki Kodama
  • Patent number: 8401700
    Abstract: The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: March 19, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, David M. Reich, Scott R. Askew