Patents Examined by Manjunath N. Rao
  • Patent number: 11306126
    Abstract: A film of the present invention contains a polypeptide derived from spider silk proteins. The decomposition temperature of the film is 240 to 260° C. The film absorbs ultraviolet light having a wavelength of 200 to 300 nm and has a light transmittance of 85% or more at a wavelength of 400 to 780 nm. The film is transparent and colorless in a visible light region. A method for producing a film of the present invention includes: dissolving a polypeptide derived from spider silk proteins in a dimethyl sulfoxide solvent to prepare a dope; and cast-molding the dope on a surface of a base. Thus, the present invention provides a spider silk protein film that can be formed easily and has favorable stretchability, and a method for producing the same.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: April 19, 2022
    Assignee: SPIBER INC.
    Inventors: Kaori Sekiyama, Mizuki Ishikawa, Shinya Murata
  • Patent number: 11292827
    Abstract: Disclosed is a method of producing high-concentration collagen for use as a medical material, including: washing tissue of a mammal; subjecting the washed tissue to crushing and immersion in ethyl alcohol; subjecting the tissue to enzymatic treatment with stirring in purified water containing phosphoric acid and pepsin; adding sodium chloride to the collagen subjected to enzymatic treatment, performing stirring, and aggregating collagen; dissolving the aggregated collagen in purified water to give a collagen solution, which is then filtered using a filter and concentrated by removing the pepsin, low-molecular-weight material, and sodium chloride from the collagen solution using a tangential flow filtration device; subjecting the concentrated collagen to sterile filtration, aggregating the collagen using a pH solution in a neutralization tank, and concentrating the collagen by removing a non-aggregated solution; and concentrating the concentrated collagen using a centrifuge and stirring the concentrated collag
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 5, 2022
    Assignee: SEWONCELLONTECH CO., LTD.
    Inventors: Cheong Ho Chang, Hyeong Woo Jeong, Ji Chui Yoo, Se Ken Yeo, Dong Sam Suh
  • Patent number: 11225645
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase, According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: January 18, 2022
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 11155789
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 26, 2021
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 11098337
    Abstract: The disclosure relates to the field of glyco-engineering, more specifically, to eukaryotic cells wherein both an endoglucosaminidase and a glycoprotein are present. These cells can be used to deglycosylate or partly deglycosylate the (exogenous) glycoprotein, in particular, without the need for adding an extra enzyme. Methods are also provided for the application of these cells in protein production. According to one specific aspect, the eukaryotic cells are glyco-engineered yeast cells in which, additionally, at least one exogenous enzyme needed for complex glycosylation is present, e.g., allowing easier separation of differentially glycosylated glycoproteins.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: August 24, 2021
    Assignees: VIB VZW, Universiteit Gent
    Inventors: Nico L. M. Callewaert, Karen De Pourcq, Steven Geysens, Leander Meuris
  • Patent number: 11034931
    Abstract: The invention relates to yeast cells with useful characteristics, including being capable of utilizing panose as sole carbon source and/or capable of utilizing one or more dipeptidesas sole nitrogen source. The invention also relates to yeast cells with useful genotypes including comprising at least 4 allelic genes encoding IMA1p and/or at least two allelic genes encoding IMA5p.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 15, 2021
    Assignee: Carlsberg Breweries A/S
    Inventors: Natalia Y. Solodovnikova, Jeppe Frank Andersen, Rosa Garcia Sanchez, Zoran Gojkovic
  • Patent number: 10996227
    Abstract: Pre-coated analysis substrates, and methods of making the substrates and using them to analyze animal tissue, are described. The pre-coated analysis substrates can be made by forming a matrix surface on an analysis substrate; adding a protease to the matrix surface to form a pre-coated analysis substrate; and placing an animal tissue specimen on the matrix surface. The animal tissue can then be analyzed by allowing the protease to partially digest the animal tissue specimen; and analyzing the partially digested animal tissue specimen by mass spectrometry.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 4, 2021
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Richard Caprioli, Junhai Yang, Jeremy L. Norris, Faizan Zubair, Paul Edward Laibinis
  • Patent number: 10988738
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: April 27, 2021
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 10961553
    Abstract: Methods and compositions, including nucleotide sequences, amino acid sequences, and host cells, for producing fatty alcohols are described.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 30, 2021
    Assignee: Genomatica, Inc.
    Inventors: Zhihao Hu, Vikranth Arlagadda
  • Patent number: 10952970
    Abstract: The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: March 23, 2021
    Assignees: THE TEXAS A&M UNIVERSITY SYSTEM, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Allison R. Ficht, Kenneth Carson, Cynthia Sheffield, John Herbert Waite
  • Patent number: 10927382
    Abstract: The present disclosure relates to the use of a switch for the production of heterologous non-catabolic compounds in microbial host cells. In one aspect, provided herein are genetically modified microorganisms that produce non-catabolic compounds more stably when serially cultured under aerobic conditions followed by microaerobic conditions, and methods of producing non-catabolic compounds by culturing the genetically modified microbes under such culture conditions. In another aspect, provided herein are genetically modified microorganisms that produce non-catabolic compounds more stably when serially cultured in the presence of maltose followed by the reduction or absence of maltose, and methods of producing non-catabolic compounds by culturing the genetically modified microbes under such culture conditions.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 23, 2021
    Assignees: AMYRIS, INC., TOTAL MARKETING SERVICES
    Inventors: Hanxiao Jiang, Adam Meadows
  • Patent number: 10926220
    Abstract: Methods for enzyme-enhanced CO2 capture include contacting a CO2-containing gas with an aqueous absorption solution at process conditions—such as high temperature, high pH, and/or using carbonate-based solutions—in the presence of Thermovibrio ammonificans carbonic anhydrase (TACA) or functional derivative thereof for catalyzing the hydration reaction of CO2 into bicarbonate and hydrogen ions and/or catalyzing the desorption reaction to produce a CO2 gas. The TACA may be provided to flow with the solution to cycle through a CO2 capture system that includes an absorber and a stripper.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 23, 2021
    Assignee: SAIPEM S.P.A.
    Inventors: Normand Voyer, Richard Daigle, Éric Madore, Sylvie Fradette
  • Patent number: 10927399
    Abstract: The present invention relates to a method of identifying a heterologous polypeptide having enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA in (the cytosol of) a yeast cell comprising: a) providing a mutated yeast cell comprising a deletion of at least one gene of the (PDH) by-pass, selected from the genes encoding the enzymes pyruvate decarboxylase (PDC), acetaldehyde dehydrogenase (ALD), and acetyl-CoA synthetase (ACS); b) transforming said mutated yeast cell with an expression vector comprising a heterologous nucleotide sequence encoding a candidate polypeptide having potential enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA; c) testing said recombinant mutated yeast cell for its ability to grow on minimal medium containing glucose as sole carbon source, and d) identifying said candidate polypeptide as a heterologous polypeptide having enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA in (the cytosol of
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: February 23, 2021
    Assignee: DSM IP ASSETS B.V.
    Inventors: Ulrike Maria Mueller, Liang Wu, Lourina Madeleine Raamsdonk, Aaron Adriaan Winkler
  • Patent number: 10888638
    Abstract: The present invention relates to a method of producing a collagen membrane that has particular mechanical properties.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: January 12, 2021
    Inventor: Ming Hao Zheng
  • Patent number: 10889842
    Abstract: The present disclosure relates to recombinant microorganisms engineered for enhance production of a desired amino acid, as well as related biomass, and compositions which are useful, inter alia, as animal feed ingredients. The present invention also provides related methods.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: January 12, 2021
    Assignee: CALYSTA, INC.
    Inventors: Renee M. Saville, Joshua A. Silverman, Eric G. Luning, Brandon D. Doss, Lorraine Joan Giver, Sol M. Resnick, Drew D. Regitsky
  • Patent number: 10889849
    Abstract: The present invention provides an assay for detection of oxidized glutathione (GSSG).
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: January 12, 2021
    Assignee: PROMEGA CORPORATION
    Inventors: Fen Huang, Dieter Klaubert, John Shultz, Wenhui Zhou
  • Patent number: 10881761
    Abstract: Disclosed herein is a method of producing collagen particles. Each of the collagen particle is characterized in having a particle size of about 10-250 ?m, in which the integrity of collagen fibers therein is relatively intact.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 5, 2021
    Assignee: ACRO BIOMEDICAL COMPANY. LTD.
    Inventors: Jun-Jie Wang, Pei-Hua Tsai, Kai-Chi Ku, Dar-Jen Hsieh
  • Patent number: 10865400
    Abstract: Modified PH20 hyaluronidase polypeptides, including modified polypeptides that exhibit increased stability and/or increased activity, are provided. Also provided are compositions and formulations and uses thereof.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: December 15, 2020
    Assignee: Halozyme, Inc.
    Inventors: Ge Wei, H. Michael Shepard, Qiping Zhao, Robert James Connor
  • Patent number: 10829525
    Abstract: In one aspect the present invention is directed to mutant NGAL proteins that have the ability to bind to siderophores, such as enterochelin, and to chelate and transport iron, and that are excreted in the urine. Such NGAL mutants, and complexes thereof with siderophores, can be used to clear excess iron from the body, for example in the treatment of iron overload. The NGAL mutants of the invention also have antibacterial activity and can be used in the treatment of bacterial infections, such as those of the urinary tract.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 10, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jonathan Barasch, Andong Qiu
  • Patent number: 10828260
    Abstract: The present invention provides, in part, formulations comprising a beta-lactamase. Particularly, modified-release formulations comprising a beta-lactamase are provided which release a substantial amount of the beta-lactamase in the intestines. Therapeutic uses of the beta-lactamase formulations are also provided.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Synthetic Biologics, Inc.
    Inventors: Andrew Bristol, Michael Kaleko, Sheila Connelly