Abstract: The purpose of the present invention is to provide a cardiac cell culture material which specifically acts on cardiac cells. In addition, another purpose of the present invention is to provide artificial organ material obtained by culturing by using said cardiac cell culture material, and a method for producing the same. Thus, provided is a cardiac cell culture, wherein functional cardiac tissue is favorably built by using a cardiac cell culture material containing VCAM-1.
Abstract: A method of obtaining a pancreatic multipotent or unipotent cell including providing a cell of a first type which is not a pancreatic multipotent or unipotent cell; contacting the cell of a first type with an agent capable of remodeling the chromatin and/or DNA of the cell; transiently increasing expression of at least one pancreatic multipotent or unipotent gene regulator in the cell of a first type, to a level at which the at least one pancreatic multipotent or unipotent gene regulator is capable of driving transformation of the cell of a first type into the pancreatic multipotent or unipotent cell; and placing or maintaining the cell in a pancreatic cell culture medium and maintaining intracellular levels of the at least one pancreatic multipotent or unipotent gene regulator for a sufficient period of time to allow a pancreatic multipotent or unipotent cell to be obtained.
Abstract: The present invention relates to a method for determining the biological activity or therapeutic efficacy of cultured mesenchymal lineage precursor cells or stem cells based on their released TGF-9 levels in culture. The present invention also relates to isolated populations of mesenchymal lineage precursor cells or stem cells selected based on the level of TGF-9 levels released by such cells in culture. The present invention further relates to treatment of a subject suffering from a degenerative disc disease by administering such selected cell populations.
Abstract: Among other aspects, the present invention relates to cell culture conditions for producing high molecular weight vWF, in particular, highly multimericWF with a high specific activity and ADAMTS13 with a high specific activity. The cell culture conditions of the present invention can include, for example, a cell culture medium with an increased copper concentration and/or cell culture supernatant with a low ammonium (NH4+) concentration. The present invention also provides methods for cultivating cells in the cell culture conditions to express high molecular weight vWF and rA13 having high specific activities.
Type:
Grant
Filed:
October 30, 2020
Date of Patent:
October 10, 2023
Assignee:
Takeda Pharmaceutical Company Limited
Inventors:
Leopold Grillberger, Manfred Reiter, Wolfgang Mundt
Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of polynucleotides encoding AADC for the treatment of Parkinson's Disease.
Abstract: Some embodiments provide a method of treating skeletal muscular myopathy, e.g., Duchenne muscular dystrophy (DMD), with cardiosphere-derived cells (CDCs), wherein a therapeutically effective amount of CDCs is delivered to a targeted dystrophic skeletal muscle. Some embodiment enable delivery of a therapeutically effective amount of CDCs via intramuscular injection directly at a skeletal muscle or systemic administration, intravenous injection, in a single dose or multiple doses, to treat a targeted dystrophic skeletal muscle. Some embodiments provide a method for improving exercise capabilities in DMD patients. Additional embodiments relate to exosome, mediated transfer of noncoding RNAs ameliorates Duchenne muscular dystrophy by restoring dystrophin in heart and skeletal muscle. Delivery of noncoding RNA species found in CDC-derived exosomes mimics the ability of CDCs and CDC-derived exosomes to increase dystrophin protein levels.
Type:
Grant
Filed:
April 18, 2018
Date of Patent:
September 19, 2023
Assignees:
Cedars-Sinai Medical Center, Capricor, Inc.
Inventors:
Eduardo Marban, Mark Amin Aminzadeh, Russell Rogers, Jennifer Moseley, Luis Rodriguez-Borlado, Saravana Kanagavelu, Christopher Stewart Sakoda
Abstract: Provided herein are populations of modified NK-92 cells, compositions and kits comprising the cells, and methods of making and using the populations of cells.
Type:
Grant
Filed:
July 23, 2020
Date of Patent:
September 12, 2023
Assignee:
ImmunityBio, Inc.
Inventors:
Hans Klingemann, Laurent Boissel, Patrick Soon-Shiong
Abstract: The invention provides an isolated thermostable polypeptide possessing FGF2 activity and having at least 85% sequence identity to SEQ ID NO: 2 (FGF2 wt) or a functional fragment thereof, and comprising at least one amino acid substitution R31L and the use thereof in the cell biology research, regenerative medicine and related medical applications or cosmetics. Further it discloses a culture medium comprising subjected FGF2 suitable for culturing a human pluripotent stem cells involving both human embryonic stem cells and induced pluripotent stem cells.
Type:
Grant
Filed:
October 3, 2016
Date of Patent:
September 5, 2023
Assignees:
Masarykova Univerzita, Enantis s.r.o.
Inventors:
Petr Dvorak, Pavel Krejci, Lukas Balek, Livia Eiselleova, Zaneta Konecna, Pavel Dvorak, David Bednar, Jan Brezovsky, Eva Sebestova, Radka Chaloupkova, Veronika Stepankova, Pavel Vanacek, Zbynek Prokop, Jiri Damborsky, Michaela Bosakova
Abstract: Provided are methods for producing compositions comprising a population of cardiomyocytes enriched for or substantially devoid of sinoatrial node-like pacemaker cardiomyocytes (SANLCM) from human pluripotent stem cells (hPSCs), and methods of use thereof.
Abstract: Cancer immunotherapy using genetically engineered NK cells is enhanced by expression of recombinant co-stimulatory molecules to deliver co-stimulatory signals to a recipient host's immune cells to enhance an immune response.
Type:
Grant
Filed:
December 3, 2019
Date of Patent:
August 15, 2023
Assignee:
Nant Holdings IP, LLC
Inventors:
Patrick Soon-Shiong, Kayvan Niazi, Shahrooz Rabizadeh
Abstract: The present disclosure relates to genetically modified non-obese diabetic (NOD) mice deficient in murine class I MHC molecules, class II molecules, or both class I and class II MHC molecules. The MHC knockout transgenic mice provided herein are useful, for example, for developing therapies for diabetes.
Abstract: Methods for producing hepatocytes from pluripotent human stem cells are disclosed herein. The stem cells are plated on a cell culture substrate comprising two laminins. The stem cells are then exposed to different cell culture mediums to induce differentiation. The resulting hepatocytes have higher metabolic capacity compared to hepatocytes cultured on different substrates.
Type:
Grant
Filed:
June 16, 2020
Date of Patent:
August 1, 2023
Assignee:
BIOLAMINA AB
Inventors:
Louise Kristina Hagbard, Carl Gunnar Jesper Ericsson, Katherine Rachel Cameron, David Colin Hay, Stuart John Forbes, Hassan Rashidi
Abstract: The present invention relates in part to nucleic acids encoding proteins, nucleic acids containing non-canonical nucleotides, therapeutics comprising nucleic acids, methods, kits, and devices for inducing cells to express proteins, methods, kits, and devices for transfecting, gene editing, and reprogramming cells, and cells, organisms, and therapeutics produced using these methods, kits, and devices. Methods for inducing cells to express proteins and for reprogramming and gene-editing cells using RNA are disclosed. Methods for producing cells from patient samples, cells produced using these methods, and therapeutics comprising cells produced using these methods are also disclosed.
Abstract: A method to increase the efficiency of myotube generation and maturation from pluripotent stem cells comprising: (a) differentiating pluripotent stem cells to myogenic progenitors; and (b) terminally differentiating said myogenic progenitors from (a) into myotubes in the presence of at least one gamma secretase inhibitor, wherein myotube generation is increased in the presence of at least one gamma secretase inhibitor, as compared to differentiation in the absence of gamma secretase inhibitors.
Abstract: The present invention relates in part to nucleic acids encoding proteins, nucleic acids containing non-canonical nucleotides, therapeutics comprising nucleic acids, methods, kits, and devices for inducing cells to express proteins, methods, kits, and devices for transfecting, gene editing, and reprogramming cells, and cells, organisms, and therapeutics produced using these methods, kits, and devices. Methods for inducing cells to express proteins and for reprogramming and gene-editing cells using RNA are disclosed. Methods for producing cells from patient samples, cells produced using these methods, and therapeutics comprising cells produced using these methods are also disclosed.
Abstract: This disclosure relates to methods of producing induced pluripotent (iPS), multipotent, and/or lineage-committed stem cells from differentiated cells, maintaining iPS, multipotent, and/or lineage-committed cells in culture, and re-differentiating the iPS and multipotent stem cells into any desired lineage-committed cell type.
Type:
Grant
Filed:
July 24, 2019
Date of Patent:
July 4, 2023
Assignee:
The USA, as represented by, the Secretary, Department of Health and Human Services
Inventors:
David D. Roberts, Sukhbir Kaur, Jeffrey S. Isenberg
Abstract: Certain donor plasmid vectors such as pFastBac™1 and pFastBac™ Dual lack a cis DNA element upstream of the polh translation start codon (ATG) present in wild type (wt) Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and contain a SV40 pA fragment. When a cis DNA element is inserted upstream of the 50 bp polh promoter and SV40 pA was replaced with a AcMNPV polh pA signal in pFastBac™1 and pFastBac™Dual, certain protein expression levels in High Five™ cells using the Bac-to-Bac® system reached that of the wt AcMNPV.
Abstract: The electrical pacemakers currently being used for the therapeutic approaches for treatment of “sick sinus syndrome” are not hormonally regulatable and entail risks through infections or premature battery discharge. These problems could be overcome by means of “biological cardiac pacemakers” obtained from pluripotent stem cells (PSCs). It has been shown that the controlled differentiation of stem cells with TBX, inductors of sinoatrial node cells, and an additional Myh6 promoter-specific antibiotic selection can give cardiomyocyte aggregates consisting to an extent of more than 80% of physiologically functional pacemaker cells. These induced sinoatrial bodies (“iSABs”) for the first time exhibited very high beat frequencies (300-400 bpm), similar to those in a murine heart, and were able to stably rhythmically stimulate heart muscle cells ex vivo.
Abstract: The invention provides methods for reprogramming somatic cells to generate multipotent or pluripotent cells. Such methods are useful for a variety of purposes, including treating or preventing a medical condition in an individual. The invention further provides methods for identifying an agent that reprograms somatic cells to a less differentiated state.
Type:
Grant
Filed:
August 29, 2022
Date of Patent:
May 23, 2023
Assignee:
Whitehead Institute for Biomedical Research
Abstract: Described are nucleic acid regulatory elements that are able to enhance liver-specific expression of genes, methods employing these regulatory elements and uses of these elements. Expression cassettes and vectors containing these nucleic acid regulatory elements are also disclosed. These are particularly useful for applications using gene therapy.
Type:
Grant
Filed:
October 21, 2019
Date of Patent:
May 23, 2023
Assignees:
VIB VZW, Universiteit Gent, Life Sciences Research Partners VZW
Inventors:
Marinee Chuah, Thierry Vandendriessche, Pieter De Bleser