Patents Examined by Marcus Taningco
  • Patent number: 9739899
    Abstract: A method of verifying the operational status of a neutron detecting device includes at least partially enclosing a neutron detecting device including a neutron detector in a container having outer walls comprising a thermal neutron absorber material, and determining an attenuated neutron count rate of the neutron detecting device. The method then includes removing the neutron detecting device from the container, exposing the neutron detecting device to neutron radiation originating from cosmic ray background, determining an operational neutron count rate of the neutron detecting device, determining a ratio between the operational neutron count rate and the attenuated neutron count rate, and verifying the operational status of the neutron detecting device if the operational neutron count rate is higher than the attenuated neutron count rate by at least a predetermined amount and the ratio is in a predetermined range.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: August 22, 2017
    Assignee: Thermo Fisher Scientific Messtechnik GmbH
    Inventors: Michael Iwatschenko-Borho, Reinhard Loew
  • Patent number: 9739894
    Abstract: For dead time compensation, a point source with a same radioisotope as used for the radiopharmaceutical is positioned by the detector. Counts from the point source without the patient and with the patient are used to correct the system or detector sensitivity. Reconstruction is performed with the sensitivity normalized for count rate, compensating for the dead time and spectral broadening.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: August 22, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Manojeet Bhattacharya
  • Patent number: 9733369
    Abstract: Provided are a neutron monitor device and a neutron measurement method which make it easier to measure the intensity of the neutrons having the energy region of 10 KeV to several hundreds KeV. A neutron monitor device includes a first detector which includes a hemispherical first body formed of PE and having a radius of 31 mm, a first specimen containing GaN disposed at the center of the first body, a Cd layer provided on an outer surface of the first body, and a B layer provided inside the first body, and a second detector which includes a hemispherical second body formed of PE and having a radius of 27 mm, a second specimen containing GaN disposed at the center of the second body, a B layer provided on the outer surface of the second body, and a Cd layer provided inside the second body.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 15, 2017
    Assignees: MITSUBISHI HEAVY INDUSTRIES MECHATRONICS SYSTEMS, LTD., OSAKA UNIVERSITY
    Inventors: Shuhei Kuri, Toshiharu Takahashi, Hiroshi Horiike, Eiji Hoashi, Isao Murata, Sachiko Doi
  • Patent number: 9728393
    Abstract: A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light UV in response to an electron beam. The light-emitting layer includes a powdery or granular rare-earth-containing aluminum garnet crystal doped with an activator. The light-emitting layer has an ultraviolet light emission peak wavelength of 300 nm or shorter.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: August 8, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshinori Honda, Hiroyuki Taketomi, Fumitsugu Fukuyo, Koji Kawai, Hidetsugu Takaoka, Takashi Suzuki
  • Patent number: 9719927
    Abstract: An excitation light source emits excitation light to a target sample. An image sensor includes pixels arranged one-dimensionally or two-dimensionally, and receives measurement light from the sample according to the excitation light. A polarization selector arranged between the sample and image sensor includes pixels arranged one-dimensionally or two-dimensionally. Each pixel receives a corresponding portion of the measurement light, selects light having a polarization direction that corresponds to a driving signal applied to the pixels, and supplies this light to the image sensor. A measurement control unit supplies the cyclic driving signal having a first period T1, and acquires data I1, I2, I3, and I4 from each pixel of the image sensor for each exposure time segment T2=T1/4 obtained by dividing the first period T1 by 4.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: August 1, 2017
    Assignees: TOHOKU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Akihide Hibara, Manabu Tokeshi, Osamu Wakao
  • Patent number: 9720107
    Abstract: Methods, apparatuses, and methods for manufacturing apparatuses that differentially detect beta and/or gamma rays are described. One radiation sensor described herein has operational amplifier(s), two blocking layers capable of blocking beta rays, and two photodiodes. The first photodiode is disposed between the blocking layers and thus isolated from incident beta rays. Accordingly, the first photodiode is capable of detecting gamma rays and providing a current corresponding to detected gamma rays to an operational amplifier. The second photodiode is disposed on one of the blocking layers and is capable of detecting beta rays and gamma rays and providing current corresponding to detected beta and/or gamma rays to an operational amplifier. The operational amplifiers convert the currents into voltage pulses which are used to, for example, determine if beta and/or gamma rays are detected and the amount/level of detected rays.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 1, 2017
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Shin-hee Cho, In-geol Baek, Jae-geol Cho
  • Patent number: 9703004
    Abstract: A method and system for acquiring spectral information from an energy sensitive nuclear detector is disclosed. The method includes detecting nuclear radiation at a detection device and generating an electronic input pulse indicative of energy deposited in the detection device. The method further includes integrating the electronic input pulse at an integrating device to produce an integrated output signal and digitally sampling the integrated output signal of the integrating device at intervals to produce a stream of digital samples. The method further includes resetting the integrator synchronously with a sampling clock when a limit condition is reached.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: July 11, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bruno Jorion
  • Patent number: 9702987
    Abstract: According to an embodiment, a neutron measurement apparatus has: a neutron detector; a gamma ray detector; a neutron detector signal processing unit which performs Fourier transform on the signals received for a prescribed period, generates neutron detector signal frequency data in a frequency domain, calculates the neutron-detection signal power spectrum and stores it; a gamma-ray detector signal processing unit which performs Fourier transform on the signals received for a prescribed period, generates gamma ray detector signal frequency data in a frequency domain, calculates gamma ray detector signal power spectrum and stores it; and a neutron calculation unit which generates a neutron signal by removing a part contributed by the gamma ray detector signal power spectrum from the neutron detector signal power spectrum.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: July 11, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigehiro Kono, Daijiro Ito
  • Patent number: 9694208
    Abstract: Described herein are systems and methods for positioning a radiation source with respect to one or more regions of interest in a coordinate system. Such systems and methods may be used in emission guided radiation therapy (EGRT) for the localized delivery of radiation to one or more patient tumor regions. These systems comprise a gantry movable about a patient area, where a plurality of positron emission detectors, a radiation source are arranged movably on the gantry, and a controller. The controller is configured to identify a coincident positron annihilation emission path and to position the radiation source to apply a radiation beam along the identified emission path. The systems and methods described herein can be used alone or in conjunction with surgery, chemotherapy, and/or brachytherapy for the treatment of tumors.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: July 4, 2017
    Assignee: RefleXion Medical, Inc.
    Inventors: Samuel Mazin, Akshay Nanduri
  • Patent number: 9699878
    Abstract: In detecting the unignited state of plasma based on a reflected wave, false detection during a normal plasma ignition time is prevented so as to detect the unignited state during plasma abnormality. When a pulse output is supplied to a plasma load by pulse driving from an RF power source, the unignited state of plasma abnormality is detected on the basis of the continuous state of the reflected wave, whereby a total reflected wave generated in the unignited state during plasma abnormality is detected in distinction from the reflected wave generated in the normal ignited state. With this configuration, in detecting the unignited state by comparing a peak value of the reflected wave with a threshold, it is possible to prevent that a reflected wave generated in the normal ignited state is erroneously detected as the total reflected wave that is generated in the abnormal unignited state.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 4, 2017
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Itsuo Yuzurihara, Satoshi Aikawa, Ryosuke Ohma
  • Patent number: 9689995
    Abstract: Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 27, 2017
    Assignee: Purdue Research Foundation
    Inventor: Rusi P. Taleyarkhan
  • Patent number: 9683896
    Abstract: A method and a system for scanning a time delay between a first ultrafast optical pulse of duration shorter than 10 ps and a second ultrafast optical pulse of duration shorter than 10 ps, wherein the second ultrafast pulse is submitted to an acousto-optic Bragg diffraction by an acoustic pulse in the bulk of an acousto-optic material and the delay scanning is produced by time variation of the acoustic pulse in the material.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 20, 2017
    Assignee: FASTLITE
    Inventors: Rupert Huber, Olaf Schubert, Daniel Kaplan
  • Patent number: 9677946
    Abstract: The present disclosure relates to microbolometer structures having top layers of amorphous silicon or vanadium oxide. In some examples, combinations of carbon nanotubes, nanoparticles, and/or thin films can be deposited atop the existing top layer of amorphous silicon or top layer of vanadium oxide of a microbolometer structure. Such configurations can increase the sensitivity of the microbolometers to less than 4 mK, less than 2 mK, and in some examples less than 1 mK.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 13, 2017
    Assignee: Magnolia Optical Technologies, Inc.
    Inventors: Elwood J. Egerton, Ashok K. Sood
  • Patent number: 9678001
    Abstract: A route based analysis system includes, in one version, an infrared spectrometer subsystem configured to produce a spectrum for oil introduced to an oil sample cell. The system displays a route including assets with oil to be inspected. The type of oil used in each asset is determined. For each asset on the route, one or more oil property methods specific to the oil used in the asset are located. The spectrum of each asset's oil is analyzed using specific methods in order to produce oil properties.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: June 13, 2017
    Assignee: Spectro Scientific, Inc.
    Inventors: Yuegang Zhao, Raymond E. Garvey, III, Robert David Corak, Eric J. Olson, Matthew B. Fratkin, Patrick Henning
  • Patent number: 9678217
    Abstract: Various embodiments are described herein for a radiation dosimetry apparatus and associated methods for measuring radiation dose. In some embodiments, the apparatus includes multiple scintillating elements for detecting amounts of radiation dose at multiple points within a detection region. Each of the scintillating elements generates light in response to radiation interacting within their volume. A light guide combines the light generated by all of the scintillating elements as well as radiation-induced contaminated optical energy and transmits the combined light to a spectral analysis setup. Multi or hyper-spectral calibration technique allows calculating the dose or dose rate at the positions of the different scintillating elements. The calibration technique isolates the light produced by a given scintillating element from the other scintillating elements as well as any other source of radiation-induced contaminating light.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: June 13, 2017
    Assignees: Université Laval, Board of Regents, The University of Texas System
    Inventors: Francois Therriault-Proulx, Luc Beaulieu, Louis Archambault, Sam Beddar
  • Patent number: 9666743
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In some embodiments the waveguide is omitted and infrared light propagating in free space illuminates the graphene sheet directly. A photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 30, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9664558
    Abstract: The invention relates to radiation detection with a directly converting semiconductor layer for converting an incident radiation into electrical signals. Sub-band infra-red (IR) irradiation considerably reduces polarization in the directly converting semi-conductor material when irradiated, so that counting is possible at higher tube currents without any baseline shift. An IR irradiation device is integrated into the readout circuit to which the crystal is flip-chip bonded in order to enable 4-side-buttable crystals.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 30, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker
  • Patent number: 9664802
    Abstract: A simplified device is provided for analyzing radiation spectrum. A detector absorbs radioactive particles for generating signal pulses. A signal converter is connected with the detector to discriminate and amplify the signal pulses to be converted into digital pulses. The microcomputer single-chip is connected with the signal converter to measure dual-channel pulse widths for statistical analysis and to measure pulse free count. Under a very low power mode, a pair of information comprising random physical memory spectrum and pulse count are generated. The microcomputer single-chip has a low cost and can be abundantly supplied. Thus, by using the microcomputer single-chip as a touch-driven application, a reading module replaces the high-frequency precision clock. The reading module is built-in for charging voltages with constant-current pulses. Consequently, spectrum analysis is performed for the signal pulses of gamma ray detected by the detector.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 30, 2017
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, Executive Yuan, R.O.C.
    Inventors: Hsun-Hua Tseng, Tin-Yu Liaw
  • Patent number: 9651710
    Abstract: A downhole fluid properties analysis device connectable to a downhole sampling flow line having an internal diameter between 2 to 15 mm adapted to let flow the fluid, a hydrocarbon multiphase fluid from a hydrocarbon subsurface reservoir, to be analyzed. The analysis device includes an analysis pipe portion and a first optical probe arranged to transmit a light into the fluid and a second optical probe, connected to a spectrometer and arranged to produce a signal resulting from an interaction of the fluid with said light indicative of the downhole fluid properties. Each optical probe has an elongated body mounted through the wall of the analysis pipe portion and a needle-shaped tip with an external diameter less than 1 mm. The tips of the probes project into a flow section of the analysis pipe portion such that the first tip faces the second tip.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 16, 2017
    Assignee: OPENFIELD
    Inventors: Eric Donzier, Linda Abbassi, Emmanuel Tavernier
  • Patent number: 9649509
    Abstract: Described herein are systems and methods for positioning a radiation source with respect to one or more regions of interest in a coordinate system. Such systems and methods may be used in emission guided radiation therapy (EGRT) for the localized delivery of radiation to one or more patient tumor regions. These systems comprise a gantry movable about a patient area, where a plurality of positron emission detectors, a radiation source are arranged movably on the gantry, and a controller. The controller is configured to identify a coincident positron annihilation emission path and to position the radiation source to apply a radiation beam along the identified emission path. The systems and methods described herein can be used alone or in conjunction with surgery, chemotherapy, and/or brachytherapy for the treatment of tumors.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: May 16, 2017
    Assignee: RefleXion Medical, Inc.
    Inventors: Samuel Mazin, Akshay Nanduri