Patents Examined by Margery Phipps
  • Patent number: 5879619
    Abstract: A high-Cr and high-Ni alloy of the invention comprises the following chemical composition and has excellent corrosion resistance to hydrogen sulfide in an environment where a partial pressure of hydrogen sulfide is about 1 atm., or below and the temperature is about 150.degree. C. The alloy is free of any expensive Mo and W and is thus inexpensive, with the attendant feature that mass production is possible: Si: 0.05-1.0%, Mn: 0.1-1.5%, Cr: 20-30%, Ni: 20-40%, sol. Al: 0.01-0.3%, Cu: 0.5-5.0%, REM: 0-0.10%, Y: 0-0.20%, Mg: 0-0.10%, Ca: 0-0.10%, and balance: Fe and incidental impurities, provided that C, P and S in the incidental impurity are, respectively, 0.05% or below, 0.03% or below and 0.01% or below. As set out above, each of REM, Y, Mg and Ca do not have to be added at all. If these elements are used, one or more of REM, Y, Mg and Ca are added. Preferable ranges of the contents of these elements when added are such that REM: 0.001-0.10%, Y: 0.001-0.20%, Mg: 0.001-0.10%, and Ca: 0.001-0.10%.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: March 9, 1999
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Masakatsu Ueda
  • Patent number: 5879818
    Abstract: An alloy having an excellent corrosion resistance and workability and being suitable particularly for seamless tubes of the industrial waste incineration boiler. The alloy consists essentially of, in weight %,:______________________________________ up to 0.05% C, up to 0.5% Si, up to 0.5% Mn, up to 0.01% P 20-25% Cr, 8-12% Mo, more than 0.5% and up to 1.0% Nb, more than 15% and up to 20% Fe, up to 0.4% Al, up to 0.1% in total of rare earth metals, up to 0.01% Ca, up to 0.01% Mg, up to 0.01% B, ______________________________________and the balance Ni and incidental impurities, wherein the Fe content and the Nb content are defined so as to satisfy the following formula (a):Fe(%).gtoreq.4.times.Nb(%)+12.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: March 9, 1999
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Syoji Kinomura, Takao Kan, Yoshimi Yamadera
  • Patent number: 5873950
    Abstract: There is provided a nickel-base alloy with service enhanced strengthening properties. When exposed to ethylene pyrolysis conditions, namely a carbon containing environment and at temperatures of at least about 900.degree. C., the alloy forms M.sub.6 C and MC carbides that strengthen the alloy. The alloy may be formed into internally finned tubing.The alloy includes about 0.08-0.11% carbon, 41-45% nickel, 23-26% chromium, 0.6-0.95% manganese, 1-1.7% silicon, 0.2-0.6% titanium, 0.25-0.55% aluminum, 1.3-1.7% molybdenum, 0.25-0.6% niobium, 0.15-0.45% tantalum, 0-0.2% tungsten, 0.001-0.005% boron, 0.01-0.03% zirconium, and the balance iron with trace commercial impurities.
    Type: Grant
    Filed: June 13, 1996
    Date of Patent: February 23, 1999
    Assignee: Inco Alloys International, Inc.
    Inventors: Pasupathy Ganesan, Gaylord Darrell Smith, Charles R. Conder
  • Patent number: 5866068
    Abstract: A heat-resistant alloy suitable as a material for reactor tubes such as cracking tubes for producing ethylene in the petrochemical industry consisting essentially of, in % by weight, 0.1 to 0.5% of C, over 0% to not more than 4% of Si, over 0% to not more than 3% of Mn, over 40% to not more than 50% of Cr, over 0% to not more than 10% of Fe, 0.01 to 0.6% of Ti, 0.01 to 0.2% of Zr, at least one element selected from the group consisting of 0.5 to 5% of W, 0.3 to 2% of Nb and 0.5 to 3% of Mo, and the balance substantially Ni. The alloy is excellent in oxidation resistance, high-temperature creep rupture strength, carburization resistance and ductility after aging.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: February 2, 1999
    Assignee: Kubota Corporation
    Inventor: Makoto Takahashi
  • Patent number: 5866067
    Abstract: The present invention relates to high purity chromium metal suitable for deposition onto a semiconductor wafer or other substrate by sputtering. The high purity chromium metal is produced by a process that increases productivity, expands melting capability and provides consistent high purity chromium by reducing contamination by the dissolution of crucible material. The present invention provides high purity chromium by the addition of chromium oxide (Cr.sub.2 O.sub.3) to molten chromium to control oxygen content in the chromium thereby producing high purity chromium ingots and protecting the ceramic crucibles from chemical attach by the liquid chromium.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: February 2, 1999
    Assignee: Sony Corporation and Materials Research Corporation
    Inventors: Raymond K. F. Lam, Charles E. Melin, Guiseppe Colella
  • Patent number: 5863494
    Abstract: An iron-nickel superalloy of the type IN 706 has an addition of 0.02 to 0.3 percent by weight of boron and/or 0.05 to 1.5 percent by weight of hafnium. By means of this addition, a virtual doubling of the ductility is achieved as compared with an addition-free iron-nickel superalloy of the type IN 706, while the hot strength is reduced only slightly. The alloy is particularly suitable as a material for rotors of large gas turbines. It has a sufficiently high hot strength. When locally acting temperature gradients arise unwanted stresses can occur to only a slight extent because of the high ductility of the alloy.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: January 26, 1999
    Assignee: Asea Brown Boveri AG
    Inventors: Mohamed Nazmy, Corrado Noseda, Joachim Rosler, Markus Staubli
  • Patent number: 5858558
    Abstract: A nickel-base gamma-sigma intermetallic matrix composite material suitable for forming gas turbine engine components and structural coatings for such components. The composite material contains, in weight percent, about 20 to 50 chromium, about 0 to 32 molybdenum, and about 0.5 to 7 silicon, with the balance being nickel and incidental impurities. In addition, the composite material may contain aluminum and titanium in amounts of up to about 7 and 3 weight percent, respectively. The resulting intermetallic matrix composite material is characterized by a sigma volume fraction of greater than 30 percent, preferably at least about 50 percent, and may have a dendritic, fibrous or lamellar microstructure. The composite material can be cast to form a component, or deposited by known techniques to form a structural coating on a component.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: January 12, 1999
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 5858134
    Abstract: The invention concerns a process for the production of rolled or extruded products of high strength AlSiMgCu aluminium alloy with good intergranular corrosion resistance, comprising the following steps:casting a plate or billet with the following composition (by weight):Si: 0.7-1.3%Mg: 0.6-1.1%Cu: 0.5-1.1%Mn: 0.3-0.8%Zr: <0.20%Fe: <0.30%Zn: <1%Ag: <1%Cr: <0.25%other elements: <0.05% each and <0.15% in total remainder: aluminium; with: Mg/Si<1homogenising in the range 470.degree. C. to 570.degree. C.;hot working, and optionally cold working;solution heat treating in the range 540.degree. C. to 570.degree. C.;quenching;annealing, comprising at least one temperature plateau in the range 150.degree. C. to 250.degree. C., preferably in the range 165.degree. C. to 220.degree. C., the total period measured as the equivalent time at 175.degree. C. being in the range 30 h to 300 h.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: January 12, 1999
    Assignee: Pechiney Rhenalu
    Inventors: Denis Bechet, Timothy Warner
  • Patent number: 5857141
    Abstract: A metal-core weld wire usable for gas shielded arc welding gapless joints on low carbon and low alloy galvanized and galvanealed steels. The metal-core weld wire includes a low carbon steel sheath surrounding a core composition. In one embodiment, the low carbon steel sheath includes, by total weight of the metal-core weld wire, between approximately 0.01-0.03% C, and the core composition includes, by total weight of the metal-core weld wire, between approximately 0.05-0.20% Ti, between approximately 0.05-1.00% Nb, Fe powder, and Mn to the extent that the metal-core weld wire includes between approximately 0.1-1.0% Mn wherein the metal-core weld wire includes between approximately 0.1-1.0% Si. The core composition is, by total weight of the metal-core weld wire, between approximately 0.001-12.0%. The metal-core weld wire provides, at weld rates up to 150 cm/min, reduced arc ionization potential and spatter, and improved arc stability and shielding.
    Type: Grant
    Filed: June 11, 1996
    Date of Patent: January 5, 1999
    Assignee: Illinois Tool Works Inc.
    Inventors: James M. Keegan, Sundaram Nagarajan, Roger A. Daemen, Joseph Bundy
  • Patent number: 5853508
    Abstract: An aluminium alloy in extruded form, consisting of in weight %:______________________________________ Si 11.0-13.5 Mg 0.5-2.0 Fe not more than 1.0 Cu not more than 0.35 Zr not more than 0.1 Ni not more than 0.1 Cr not more than 0.1 Zn ot more thane 0.1 Sr 0.02-0.1 Mn not more than 1.2 Bi not more than 1.0 Pb not more than 1.0 Sn not more than 1.0 ______________________________________balance Al and unavoidable impurities. This alloy has high wear resistance, good corrosion resistance and good machinability. It is particularly suitable for shaped articles used at below 150.degree. C.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: December 29, 1998
    Assignee: Hoogovens Aluminium NV
    Inventors: Louis Walter Marie Paul Tack, Edouard Willem Suman, Henricus Matheus Van Der Donk
  • Patent number: 5853661
    Abstract: A high gold content dental alloy comprises, on a weight basis, 91 to 99.4% of gold, 0.5 to 3% of at least one metal selected from titanium and tantalum, up to 5% of silver, 0.05 to 1% of iridium and/or tungsten, and up to 1% at least one element selected from the group comprising rhodium, ruthenium, platinum, osmium, iron, molybdenum, niobium and rhenium.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: December 29, 1998
    Assignee: Cendres ET Metaux SA
    Inventor: Jens Fischer
  • Patent number: 5851318
    Abstract: The invention relates to a high temperature forgeable alloy consisting of<0.05 C<0.5 Si<0.5 Mn8.5 to 11 Al<0.02 P<0.01 S4 to 10 Cr23 to 28 Fe0.025 to 0.2 Hf and/or rare earths and/or Zr<0.5 Ti<0.005 Bresidue nickel and admixtures due to melting. It is used in the production of articles for energy technologies and in the chemical industry. The alloy is resistant to sulphidization, carbonization and oxidation at temperatures between 400.degree. and 1100.degree. C.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 22, 1998
    Assignee: Krupp VDM GmbH
    Inventor: Jutta Klower
  • Patent number: 5846352
    Abstract: A platinum alloy containing 1 to 9 percent gallium and minor amounts of property enhancing additives, eg. up to 3% Pd. This alloy can be heat-treated to a Vickers hardness that is increased by at least over 25% beyond its initial, untreated value and typically to at least over 300 HV. The heat-treatment process includes the steps of solution-treating the alloy, followed by quenching and a hardening heat-treatment to achieve the desired hardness and strength. The alloy is useful as a component of jewelry, art objects or related articles.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: December 8, 1998
    Inventor: Steven Kretchmer
  • Patent number: 5846353
    Abstract: A process for the production of a body of material stable at high temperatures. In this process, the body of material is formed by solution annealing and subsequent precipitation hardening of a hot work-hardened starting body composed of an iron-nickel superalloy of the type IN 706 provided in a furnace. The body of material is distinguished by a particularly high ductility in combination with high hot strength if the solution-annealed starting body is cooled from the annealing temperature envisaged for the solution annealing to the temperature envisaged for the precipitation hardening at a cooling rate of between 0.5.degree. and 20.degree. C./min.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: December 8, 1998
    Assignee: Asea Brown Boveri AG
    Inventors: Mohamed Nazmy, Markus Staubli
  • Patent number: 5844153
    Abstract: A mixed metal powder for hard metal alloys comprising cobalt, 1 to 10 parts per weight tungsten and 1 to 10 parts by weight of aluminum and a hard metal alloy containing the mixed metal powder binder in an amount of from 2 to 12 parts by weight per about 100 parts by weight of a metal carbide for corrosion resistant hard metal tools.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: December 1, 1998
    Assignee: EMTEC Magnetics GmbH
    Inventors: Manfred Schlatter, Jurgen Koppe, Volker Eichhorst
  • Patent number: 5840166
    Abstract: A rare earth metal-nickel hydrogen storage alloy having a composition represented by the formula (1) (R.sub.1-x L.sub.x) (Ni.sub.1-y M.sub.y).sub.z . . . (1) (R: La, Ce, Pr, Nd; L: Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Mg, Ca; M: Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, Si, V, Cr, Nb, Hf, Ta, W, B, C; 0.05.ltoreq.x.ltoreq.0.4, 0.ltoreq.y.ltoreq.0.5, 3.0.ltoreq.z<4.5), the alloy including in an amount of not less than 30 volume % and less than 95 volume % thereof crystals each containing not less than 5 and less than 25 antiphase boundaries extending perpendicular to C-axis of a crystal grain of the alloy per 20 nm along the C-axis, not less than 60% and less than 95% of added amount of the element represented by L in the formula (1) being arranged in antiphase areas, and a method for producing the same.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: November 24, 1998
    Assignee: Santoku Metal Industry Co. Ltd.
    Inventor: Akihito Kaneko
  • Patent number: 5833774
    Abstract: A silver/palladium alloy for electrical contact applications comprises, on a weight percent basis, 20-50 silver, 20-50 palladium, 20-40 copper, less than 1.0 nickel, 0.1-5 zinc, 0.01-0.3 boron, and up to 1 percent by weight of modifying elements selected from the group consisting of rhenium, ruthenium, gold, and platinum. The combination of zinc and boron provides an alloy of high strength and hardness and permits the use of lower amounts of both copper and palladium.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: November 10, 1998
    Assignee: The J. M. Ney Company
    Inventors: Arthur S. Klein, Edward F. Smith, III
  • Patent number: 5827377
    Abstract: A nickel-base alloy having characteristics midway between selected stainless steels and INCONEL.RTM. alloy 625LCF.RTM.. Flexible and particularly useful for exhaust system bellows, wires and braids, the alloy includes about 24-42% nickel, about 18-28% chromium, 1.5-6% molybdenum, 0.2-1 % titanium, up to 1% aluminum, the balance iron, and up to about 1.4% silicon. The alloy demonstrates a novel characteristic of becoming stronger and more ductile during contemplated service temperatures of about 800.degree.-1400.degree. F. (427.degree. C.-760.degree. C.).
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: October 27, 1998
    Assignee: INCO Alloys International, Inc.
    Inventors: James Roy Crum, Gaylord Darrell Smith, Vernon William Hartmann, William Lawrence Mankins
  • Patent number: 5817222
    Abstract: A rare earth metal-nickel hydrogen storage alloy having a composition represented by the formula (1)RNi.sub.x-y M.sub.y (1)(wherein R stands for La, Ce, Pr, Nd, or mixtures thereof, M stands for Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, Si, V, Cr, Nb, Hf, Ta, W, B, C, or mixtures thereof, x satisfies the formula of 3.5.ltoreq.x<5, and y satisfies the formula of 0<y.ltoreq.2, crystals in the alloy having a LaNi.sub.5 type single phase structure, the alloy including in an amount of not less than 5 volume % and less than 95 volume % thereof crystals each containing not less than 2 and less than 17 antiphase boundaries extending perpendicular to C-axis of a grain of the crystal in the alloy per 20 nm along the C-axis, a method of producing the same, and an anode for a nickel hydrogen rechargeable battery containing as an anode material the above rare earth metal-nickel hydrogen storage alloy and an electrically conductive material.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: October 6, 1998
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventor: Akihito Kaneko
  • Patent number: 5815792
    Abstract: A nickel-based superalloy possessing good mechanical properties when hot regarding traction, creep and cracking resistance has a chemical composition which comprises, in percentages by weight: Co 14.5 to 15.5 ; Cr 12 to 15 ; Mo 2 to 4.5 : Al 2.5 to 4; Ti 4 to 6; Hf not more than 0.5 ; C 100 to 300 ppm; B 100 to 500 ppm; Zr 200 to 700 ppm; possibly W up to 4.5; and nickel as the remainder. Components made from these alloys have an excellent microstructural stability when operating at temperatures up to 800.degree. C.
    Type: Grant
    Filed: July 30, 1996
    Date of Patent: September 29, 1998
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "Snecma"
    Inventors: Catherine Duquenne, Jean Charles Henri Lautridou, Michel Marty, Michele Soucail, Andre Walder