Patents Examined by Mark A. Chapman
  • Patent number: 10606183
    Abstract: Provided is an electrostatic latent image developing toner including toner mother particles having an external additive on a surface of the toner mother particles, wherein the external additive contains inorganic particles and aliphatic acid metal salt particles; the inorganic particles have a number average particle diameter in the range of 10 to 50 nm, and have a Mohs hardness of 8 or more; and the aliphatic acid metal salt particles have a number average particle diameter in the range of 0.4 to 2.0 ?m.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: March 31, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Koji Shibata, Takuya Takahashi, Futoshi Kadonome, Shinya Obara
  • Patent number: 10599061
    Abstract: An electrostatic-image developing toner includes toner particles, inorganic particles externally added to the toner particles, and a low-molecular-weight siloxane having a molecular weight of 200 or more and 600 or less. The low-molecular-weight siloxane includes only a siloxane bond and an alkyl group. The total content of the low-molecular-weight siloxane in the electrostatic-image developing toner is, by mass, 0.01 ppm or more and 5 ppm or less.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 24, 2020
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Soutaro Kakehi, Yasuko Torii, Moegi Iguchi, Sakon Takahashi
  • Patent number: 10599059
    Abstract: A toner is provided. The toner comprises mother particles and an external additive covering the mother particles. The mother particles comprise a binder resin, and the external additive comprises inorganic particles. The inorganic particles comprise small-size inorganic particles having an equivalent circle diameter of from 30 to 70 nm and large-size inorganic particles having an equivalent circle diameter of from 150 to 200 nm and a circularity of 0.85 or more. The large-size inorganic particles are 20 to 70 in number per 100 ?m2 image area of the toner observed with a field-emission scanning electron microscope.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: March 24, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Namie Suzuki, Kazumi Suzuki, Hisashi Nakajima, Yoshitaka Yamauchi, Kohtaroh Ogino, Akihiro Kaneko
  • Patent number: 10599060
    Abstract: A toner including: a toner particle, wherein the toner particle contains a binder resin, a compound represented by formula (1) below, and a compound in which at least a compound represented by formula (2) below and a compound represented by formula (3) below are in solid solution. In formula (1), R1, R2, R3, and R6 each independently represent an alkyl group or aryl group, and R4 and R5 each independently represent an aryl group, acyl group, or alkyl group, or R4 is bonded to R5 to form a cyclic organic functional group that contains R4, R5, and the nitrogen atom to which R4 and R5 are bonded.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: March 24, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Ichiro Kanno, Takeshi Hashimoto, Nozomu Komatsu, Masayuki Hama, Yuto Onozaki, Megumi Ikeda, Hiroyuki Fujikawa
  • Patent number: 10591835
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591834
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591832
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10591833
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, an amount of hot toner slurry is added to an external reactor holding an amount of chilled cooling water, wherein the temperature of the chilled cooling water in the external reactor is from about 8° C. to about 25° C. The amount of the chilled cooling water in the external reactor is about 10% to about 40% lower compared to the amount of the added hot toner slurry. Toner prepared using this crash cooling method is cooled at a rate of less than 0.8° C./min. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling processes using less water results in an improvement to the toner's print density and usage efficiency.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale, Trent Duane Peter
  • Patent number: 10591831
    Abstract: The present disclosure relates generally to a method to make a chemically prepared toner that employs a crash cooling process. In the crash cooling process, hot toner slurry is added to an external reactor containing a coolant comprised of previously cooled toner slurry in combination with cooled de-ionized water. The previously cooled toner slurry found in the coolant has the same toner composition as the incoming hot toner slurry. Also, the amount of the coolant in the external reactor is equivalent to the amount of incoming hot toner slurry. Polyester toners and polyester core shell toners having a borax coupling agent between the toner core and toner shell made from this crash cooling process results in an improvement to the toner performance especially a decrease in the overall toner usage.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 17, 2020
    Assignee: LEXMARK INTERNATIONAL, INC.
    Inventors: Kasturi Rangan Srinivasan, Anna Sara McLeland, Rahel Bekru Bogale
  • Patent number: 10583487
    Abstract: A method of producing a finished essentially 100% dense homogenous alloyed metallic product. First, a metal powder is provided comprised of particles with each particle having a predetermined alloy content. Next, the metal powder is blended with a mixture of a lubricant and a binder to form a composite powder. That composite powder is then compacted in a compacting die at room temperature to form a green part. The lubricant and binder are then removed by heating the green part to at least a first temperature profile in a confined atmosphere with a predetermined dew point profile. Next, the remaining green part is heated to a second temperature higher than the first temperature and with predetermined dew point and H2/H2O ratio in a furnace atmosphere to remove surface oxides from the part. Finally, the part is densified into a finished or near net shape homogenous alloyed product.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: March 10, 2020
    Assignee: TAT Technologies LLC
    Inventor: Harbhajan S. Nayar
  • Patent number: 10585368
    Abstract: Provided is an electrostatic image developing toner containing toner mother particles having external additives on a surface of the mother particle, wherein the external additives contains calcium titanate particles having an average primary particle size in the range of 50 to 150 nm, and alumina particles; and an average primary particle size of the alumina particles is less than the average primary particle size of the calcium titanate particles.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 10, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Junya Ueda, Shinya Obara, Takuya Takahashi, Ikuko Sakurada, Satoshi Uchino
  • Patent number: 10578987
    Abstract: The present invention relates to a process for producing a toner for electrophotography that is excellent in the low-temperature fusing property, the initial image quality after storage, and the document offset property. A process for producing a toner for electrophotography, including step 1: melt-mixing a mixture containing a crystalline resin (C) and ester wax (W) having a dipentaerythritol unit as a constitutional component, wherein a difference |Cmp?Wmp| between a melting point Cmp of the crystalline resin (C) and a melting point Wmp of the ester wax (W) is 30° C. or less, and the melt-mixing is performed at a temperature Kt that is the melting point Cmp or more and the melting point Wmp or more.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: March 3, 2020
    Assignee: KAO CORPORATION
    Inventors: Shogo Watanabe, Kotaro Shimada, Arisa Yamamoto
  • Patent number: 10564558
    Abstract: The electrostatic charge image developing toner of the present invention is an electrostatic charge image developing toner including a toner mother particle including at least a binding resin, and an external additive attached onto a surface of the toner mother particle, wherein a median size on a volume basis of the toner mother particle is in the range from 3.0 to 5.0 ?m, the binding resin contains at least an amorphous polyester resin as a main component, and a spherical silica particle (1) having a number average particle size in the range from 20 to 55 nm is included as the external additive.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: February 18, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Kouji Sugama, Kazumi Oura, Masaharu Matsubara, Ikuko Sakurada
  • Patent number: 10551761
    Abstract: To provide a toner for electrophotography exhibiting an excellent charge rise property, and a process for producing the same. [1] A toner for electrophotography containing a binder resin, and a polyhydroxyamine compound represented by the following formula (1) in an amount of 0.001 part by mass or more and 5.0 parts by mass or less per 100 parts by mass of the binder resin, and [2] a process for producing a toner for electrophotography, including: melt-kneading a toner raw material mixture containing a binder resin, and a polyhydroxyamine compound represented by the following formula (1) in an amount of 0.001 part by mass or more and 5.0 parts by mass or less per 100 parts by mass of the binder resin; and pulverizing a resulting melt-kneaded material.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 4, 2020
    Assignee: KAO CORPORATION
    Inventors: Takashi Kubo, Kota Ijichi
  • Patent number: 10545453
    Abstract: Provided are a process cartridge and an electrophotographic apparatus each suppressed in fluctuation in charging potential at the time of its long-term use. The process cartridge includes: an electrophotographic photosensitive member having a surface layer containing a resin and a charge-transporting substance; and a charging member configured to charge the electrophotographic photosensitive member, wherein an average of Martens hardnesses of the surface layer of the electrophotographic photosensitive member measured at a pushing force of 7 mN is 245 N/mm2 or more, and wherein in a core defined by three-dimensional surface texture standards (ISO 25178-2:2012) of the surface of the charging member, an average of Martens hardnesses measured at a pushing force of 0.04 mN is 2 N/mm2 or more and 20 N/mm2 or less, and an average of adhesivenesses measured with a scanning probe microscope in a field of view of 2-micrometer square is 70 mV or less.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Shuhei Iwasaki, Kazunori Noguchi, Harunobu Ogaki, Tatsuya Yamaai, Daisuke Miura, Akira Sakakibara, Takumi Furukawa, Yuya Tomomizu
  • Patent number: 10545422
    Abstract: A toner comprising a binder resin and a colorant, wherein the toner has a Martens hardness, as measured at a maximum load condition of 2.0×10?4 N, of from 200 MPa to 1,100 MPa.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: January 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kentaro Yamawaki, Akane Masumoto, Tomonori Matsunaga, Kunihiko Nakamura, Sara Yoshida, Shinsuke Mochizuki, Tsuneyoshi Tominaga, Kenta Kamikura, Tsutomu Shimano, Toshihiko Katakura, Shiro Kuroki
  • Patent number: 10545424
    Abstract: A liquid developer comprising a carrier liquid, a toner particle insoluble in the carrier liquid, and a polymer having a primary amino group and soluble in the carrier liquid, wherein the toner particle comprises a polyester resin having an acidic group, an acid value of the polyester resin is at least 5 mg KOH/g, a pKa of the acidic group is not more than 3.4, and the polymer having a primary amino group has a primary amino group at a position other than the end of a main chain of the polymer, and method of producing thereof.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: January 28, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Waka Hasegawa, Ryo Natori, Ayano Mashida, Junji Ito, Yasuhiro Aichi, Jun Shirakawa
  • Patent number: 10545417
    Abstract: An electrophotographic photoconductor is provided. The electrophotographic photoconductor includes a conductive substrate, a photosensitive layer, and a surface layer containing fluororesin particles, non-fluororesin particles, and a cured resin. The fluororesin particles have an average particle diameter of from 0.01 to 0.3 ?m in a cross-sectional image of the surface layer as observed by a scanning electron microscope with a magnification of 5,000 times, and when the cross-sectional image is segmented into uniform regions each being 1 ?m×4 ?m, a standard deviation of areas each of which is occupied by the fluororesin particles and the non-fluororesin particles in each of the regions is 0.2 ?m2 or less.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 28, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Hidetoshi Kami, Tomoharu Asano
  • Patent number: 10539899
    Abstract: A toner comprising a toner particle that contains a binder resin, wherein the surface of the toner particle has a reaction product of a polyhydric acid and a compound that contains a group 4 element.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: January 21, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kunihiko Nakamura, Kenta Kamikura, Maho Tanaka, Yusuke Kosaki
  • Patent number: 10539891
    Abstract: There is provided an electrophotographic member which suppresses scraping and contamination of a surface even in the durable use of multiple sheet printing under a high temperature environment. The electrophotographic member has an electroconductive substrate and a single elastic layer as a surface layer, the surface layer includes a binder resin and carbon black dispersed in the binder resin, the carbon black has a volatile content of 0.4% or more, the binder resin includes a crosslinked urethane resin and a crosslinked acrylic resin, and the surface layer has a first area in which the crosslinked urethane resin and the crosslinked acrylic resin form an interpenetrating polymer network structure, the first area being from an outer surface of the surface layer to a depth of 0.1 ?m in the surface layer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: January 21, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Toru Ishii, Kazutoshi Ishida, Wataru Moriai