Patents Examined by Mark F. Huff
  • Patent number: 9780350
    Abstract: A battery cell stack connector assembly includes a plurality of busbar modules. Each of the busbar modules has a module frame with a first side with a first connector and a second side with a second connector. Each module frame defines a module axis that extends from the first side to the second side. Each of the busbar modules also includes a busbar attached to the module frame. The plurality of busbar modules are connected to form a connector frame that defines a connector axis that extends from a first assembly side to a second assembly side. The module axes of the plurality of busbar modules are aligned with the connector axis. Also, the first connectors and second connectors are adapted so that each of the plurality of module frames is mated with and attached to respective adjacent module frames.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: October 3, 2017
    Assignee: LEAR CORPORATION
    Inventors: David Menzies, Cecil Lamar Brown, II, Pierre Ocke
  • Patent number: 9774046
    Abstract: A humidification system for a fuel cell may include a condenser configured to receive fluid output from a cathode of the fuel cell and cool the fluid to extract water from it. A heat exchanger operable to transfer heat from a heat source to an airflow flowing through the heat exchanger may also be included. When the heated airflow is brought into contact with at least some of the extracted water, the airflow is humidified prior to its entering the cathode.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: September 26, 2017
    Assignee: Ford Global Technologies LLC
    Inventors: William F. Sanderson, Mark A. Pellerin, Craig Michael Mathie, Virgo W. Edwards
  • Patent number: 9768477
    Abstract: A secondary battery abnormality notification system includes a module string formed by stacking two or more modules in a vertical direction, the modules each being formed by containing a large number of secondary battery cells, a conduit pipe extending from an upper position to a lower position of the module string, a detection unit provided at a lower position of the module string and configured to draw in a measurement target gas from the conduit pipe to detect concentration of active material contained in the measurement target gas, and a notification section configured to detect occurrence of an abnormality at least based on an output of the detection unit and notify that the abnormality has occurred.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: September 19, 2017
    Assignee: NGK Insulators, Ltd.
    Inventor: Motohiro Fukuhara
  • Patent number: 9768464
    Abstract: A strip of fuel cell components (200) comprising: a plurality of fuel cell components (202) spaced apart in a first direction; an indexing structure (210) connected to the plurality of fuel cell components, the indexing structure configured to define the position of one of the plurality of fuel cell components in the first direction; wherein the indexing structure is made from a different material to the plurality of fuel cell components. A component transfer mechanism for transferring a fuel cell sub-component to a substrate, using a roller and transfer tape. A strip of fuel cell components with a sub-component which is rotatable about a pivot. An apparatus and a method for assembling a fuel cell by applying a sub-component to an underside of a strip moving on a conveyor.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: September 19, 2017
    Assignee: Intelligent Energy Limited
    Inventors: Antony Richard Wilson, Mustafa Altaf Husain Karampurwala, Richard Albert Peart
  • Patent number: 9768481
    Abstract: Method and system for generating electrical energy from a volume of water.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: September 19, 2017
    Assignee: 4th-Phase, Inc.
    Inventor: Gerald H. Pollack
  • Patent number: 9768432
    Abstract: A cell connector for making electrically conductive contact with a plurality of battery cell terminals comprises a plurality of sections positioned next to each other including a plurality of first sections composed of an electrically conductive metal material, and at least one second section composed of an electrically insulating plastic. The at least one second section is positioned between a respective two of the plurality of first sections. The present disclosure further relates to a method for producing a cell connector, in which the at least one second section is connected to the at least two first sections by means of a nano-moulding method. The present disclosure furthermore relates to a battery module having a plurality of battery cells with terminals connected by at least one cell connector.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 19, 2017
    Assignees: Robert Bosch GmbH, Samsung SDI Co., Ltd.
    Inventor: Holger Fink
  • Patent number: 9758054
    Abstract: The present disclosure relates to reducing formation of condensate in a battery compartment using a dehumidification chamber in which air is conditioned prior to entering the battery compartment. In one embodiment, a cooling system may be configured to produce a flow of coolant. The dehumidification chamber configured to receive a flow of ambient air from an environment. A heat transfer device may be in thermal communication with the dehumidification chamber and configured to receive the flow of coolant. The heat transfer device may produce a flow of conditioned air from a thermal interaction between the flow of coolant and the flow of ambient air. The battery compartment may house a battery and may receive the flow of conditioned air and the flow of coolant. In some embodiments, the flow of coolant may pass through the heat transfer device before the flow of coolant passes through the battery compartment.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: September 12, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Boris Schilder
  • Patent number: 9761866
    Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 12, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Patent number: 9761381
    Abstract: A coin type (button type) electrochemical cell is configured of a negative electrode can configuring a negative electrode side and a positive electrode can configuring a positive electrode side. Then, the negative electrode can and the positive electrode can are formed of non-magnetic stainless steel which does not have magnetic properties due to plastic processing. Specifically, the negative electrode can and the positive electrode can are formed by using high manganese stainless steel or SUS305 having a high nickel (Ni) content. In this way, the negative electrode can and the positive electrode can are formed of non-magnetic stainless steel which maintains non-magnetic properties even after being processed into the shape of a coin, and thus it is possible to provide a non-magnetic electrochemical cell, and as a result thereof, it is possible to provide an electrochemical cell which is not affected even at the time of being arranged in the vicinity of a magnet.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 12, 2017
    Assignee: SEIKO INSTRUMENTS INC.
    Inventor: Hideharu Onodera
  • Patent number: 9761902
    Abstract: A negative electrode active material layer containing at least one selected from silicon and a silicon compound as a negative electrode active material is formed, and an amount of lithium exceeding an amount corresponding to a theoretical capacity of the negative electrode active material layer is brought into contact with the negative electrode active material layer so as to prepare a negative electrode. A positive electrode containing a lithium-absorption material capable of irreversibly absorbing lithium is prepared. The positive electrode, the negative electrode, a separator, and a nonaqueous electrolyte are enclosed inside an outer enclosure. A chemical conversion treatment of the negative electrode active material is performed with the lithium brought into contact with the negative electrode active material layer.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: September 12, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takafumi Tsukagoshi, Nobuhiko Hojo, Yu Otsuka
  • Patent number: 9755233
    Abstract: According to one embodiment, a nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The positive electrode includes a first positive electrode active material which is represented by general formula LiMSO4F (M is at least one kind of element selected from the group consisting of Fe, Mn and Zn) and has a triplite type crystal structure, and a second positive electrode active material which is represented by general formula LiM?SO4F (M? is at least one kind of element selected from the group consisting of Fe, Mn and Zn) and has a tavorite type crystal structure.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: September 5, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tetsuya Sasakawa, Norio Takami
  • Patent number: 9755199
    Abstract: An energy storage apparatus includes: a housing which has a container body and a lid portion provided with external connection terminals; an energy storage module which is arranged in the housing, the energy storage module having a cell stack; a bolt which restricts movement of the energy storage module with respect to a bottom wall of the container body; and a support member which restricts movement of the energy storage module with respect to the lid portion.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: September 5, 2017
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventor: Masamitsu Tononishi
  • Patent number: 9742027
    Abstract: A first method for fabricating an anode for use in sodium-ion and potassium-ion batteries includes mixing a conductive carbon material having a low surface area, a hard carbon material, and a binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A second method for fabricating an anode for use in sodium-ion and potassium-ion batteries mixes a metal-containing material, a hard carbon material, and binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A third method for fabricating an anode for use in sodium-ion and potassium-ion batteries provides a hard carbon material having a pyrolyzed polymer coating that is mixed with a binder material to form a carbon-composite material, which is coated on a conductive substrate. Descriptions of the anodes and batteries formed by the above-described methods are also provided.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: August 22, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sean Vail, Yuhao Lu, Long Wang, Motoaki Nishijima, Jong-Jan Lee
  • Patent number: 9742018
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 22, 2017
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Patent number: 9741990
    Abstract: Provided is a nonaqueous electrolyte secondary battery laminated separator including a laminated porous film including a porous film and a porous layer. The piercing strength (S) of the laminated porous film satisfies Formula (1): 2 gf?Sp?S?25 gf, and the piercing strength (Sp) of the porous film after removal of the porous layer from the laminated porous film satisfies Formula (2): 300 gf?S?400 gf. The nonaqueous electrolyte secondary battery laminated separator is excellent in output characteristic, shutdown characteristic, and piercing strength.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: August 22, 2017
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Hirohiko Hasegawa
  • Patent number: 9741997
    Abstract: A rechargeable battery includes fuses inside and outside a cell, thereby improving safety by preventing abnormal breakdown from occurring in the cell due to an electric short circuit. The rechargeable battery includes an electrode assembly including a first electrode plate, a second electrode plate and a separator between the first electrode plate and the second electrode plate, a case accommodating the electrode assembly, and a first electrode terminal and a second electrode terminal electrically connected to the first electrode plate and the second electrode plate and protruding to the outside of the case. One of the first electrode terminal and the second electrode terminal includes a fuse part.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: August 22, 2017
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Wonjun Lee, Sangwon Byun, Seungho Kwak
  • Patent number: 9728775
    Abstract: An anode electrode for an energy storage device includes both an ion intercalation material and a pseudocapacitive material. The ion intercalation material may be a NASICON material, such as NaTi2(PO4)3 and the pseudocapacitive material may be an activated carbon material. The energy storage device also includes a cathode, an electrolyte and a separator.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 8, 2017
    Assignee: AQUION ENERGY, INC.
    Inventors: Jay Whitacre, Alex Mohamed, Andrew Polonsky, Sneha Shanbhag, Kristen Carlisle
  • Patent number: 9722263
    Abstract: An object is to suppress interference with the flow of a reactive gas or an off-gas in a fuel cell. There is provided a fuel cell comprising a stacked body that includes at least a power generation body configured by stacking a plurality of unit cells; and an end plate that is placed on at least one end in a stacking direction of the stacked body. The stacked body includes a manifold that is formed to pass through at least the power generation body in the stacking direction and is configured to cause a reactive gas or an off-gas to flow through. The end plate comprises a through hole that is formed to communicate with the manifold; and a plate portion that is placed inside of the through hole at a position corresponding to an outer circumference of an opening of the manifold formed in an end face on the one end of the stacked body and is arranged away from the end face of the stacked body across a clearance.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 1, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Makoto Takeyama
  • Patent number: 9722232
    Abstract: A secondary battery, including an electrode assembly; a cap plate that seals the electrode assembly; an electrode pin electrically connected to the electrode assembly and on the cap plate with an insulating gasket therebetween; and a first lead tab coupled to the electrode pin, a relative ratio W2/W1 of a width W2 of the insulating gasket to a width W1 of the first lead tab satisfying 1.0<W2/W1<1.14.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 1, 2017
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jaemin Kim, Daeyon Moon
  • Patent number: 9722231
    Abstract: A battery system having a bladed fuse connector and a method of operation of the bladed fuse connector are provided. The system may, in certain embodiments, include a printed circuit board (PCB) and a high current interconnect. The high current interconnect may be mounted to and extending upward from the PCB. The battery system may also include a fuse. The fuse may limit an amount of current flowing through the battery system. Additionally, the battery system may include a bladed fuse connector coupled between the high current interconnect and the fuse. The bladed fuse connector may carry a current between the high current interconnect and the fuse. To that end, the bladed fuse connector may include an S-shaped bend between the high current interconnect and the fuse.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: August 1, 2017
    Assignee: Johnson Controls Technology Company
    Inventors: Edward J. Soleski, Richard M. DeKeuster