Patents Examined by Mark Hatzilambrou
  • Patent number: 9887282
    Abstract: A method of forming an electrical device that includes forming ohmic contacts to a type III-V semiconductor substrate, and depositing a dielectric layer on the ohmic contacts and an exposed surface of the type III-V semiconductor substrate. A nanotube is positioned on a surface of the high-k dielectric that is overlying the type III-V semiconductor substrate and is between the ohmic contacts using chemical recognition. The dielectric layer is removed so that the nanotube is repositioned directly on the type III-V semiconductor substrate to provide an Schottky contact to a channel region of the type III-V semiconductor substrate.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Ning Li, Jianshi Tang
  • Patent number: 9881883
    Abstract: An electronic device may include a first substrate, an electrically conductive feed line on the first substrate, an insulating layer on the first substrate and the electrically conductive feed line, a second substrate on the insulating layer, and an antenna on the second substrate and having nanofilm layers stacked on the second substrate. The antenna is coupled to the feed line through an aperture.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: January 30, 2018
    Assignee: AMIT VERMA
    Inventor: Amit Verma
  • Patent number: 9859268
    Abstract: A content addressable memory has many elements in one memory cell; thus, the area of one memory cell tends to be large. In view of the above, it is an object of an embodiment of the present invention to reduce the area of one memory cell. Charge can be held with the use of a channel capacitance in a reading transistor (capacitance between a gate electrode and a channel formation region). In other words, the reading transistor also serves as a charge storage transistor. One of a source and a drain of a charge supply transistor is electrically connected to a gate of the reading and charge storage transistor.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 2, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daisuke Matsubayashi
  • Patent number: 9859114
    Abstract: Provided is a highly reliable semiconductor device which includes a transistor including an oxide semiconductor. The semiconductor device includes an oxide semiconductor layer; a gate insulating layer provided over the oxide semiconductor layer; a gate electrode layer overlapping with the oxide semiconductor layer with the gate insulating layer provided therebetween; an insulating layer being in contact with part of an upper surface of the oxide semiconductor layer, covering a side surface of the gate insulating layer and a side surface and an upper surface of the gate electrode layer, and having a lower oxygen-transmitting property than the gate insulating layer; a sidewall insulating layer provided on the side surface of the gate electrode layer with the insulating layer provided therebetween; a source electrode layer and a drain electrode layer which are electrically connected to the oxide semiconductor layer.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 2, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9825146
    Abstract: A MOS capacitor, a method of fabricating the same, and a semiconductor device using the same are provided. The MOS capacitor is arranged in an outermost cell block of the semiconductor device employing an open bit line structure. The MOS capacitor includes a first electrode arranged in a semiconductor substrate, a dielectric layer arranged on a semiconductor substrate, and a second electrode arranged on the dielectric layer and including a dummy bit line.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 21, 2017
    Assignee: SK HYNIX INC.
    Inventor: Jeong Sub Lim
  • Patent number: 9780248
    Abstract: Avalanche photodiodes (APDs) having at least one top stressor layer disposed on a germanium (Ge) absorption layer are described herein. The top stressor layer can increase the tensile strain of the Ge absorption layer, thus extending the absorption of APDs to longer wavelengths beyond 1550 nm. In one embodiment, the top stressor layer has a four-layer structure, including an amorphous silicon (Si) layer disposed on the Ge absorption layer; a first silicon dioxide (SiO2) layer disposed on the amorphous Si layer, a silicon nitride (SiN) layer disposed on the first SiO2 layer, and a second SiO2 layer disposed on the SiN layer. The Ge absorption layer can be further doped by p-type dopants. The doping concentration of p-type dopants is controlled such that a graded doping profile is formed within the Ge absorption layer to decrease the dark currents in APDs.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: October 3, 2017
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Mengyuan Huang, Pengfei Cai, Dong Pan, Liangbo Wang, Su Li, Tuo Shi, Tzung I Su, Wang Chen, Ching-yin Hong
  • Patent number: 9761494
    Abstract: A semiconductor structure includes a gate structure disposed on a substrate. At least one lightly doped region adjoins the gate structure in the substrate. The at least one lightly doped region has a first conductivity type. A source feature and a drain feature are on opposite sides of the gate structure in the substrate. The source feature and the drain feature have the first conductivity type. The source feature is in the at least one lightly doped region. A bulk pick-up region adjoins the source feature in the at least one lightly doped region. The bulk pick-up region has a second conductivity type.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 12, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Chen, Wan-Hua Huang, Jing-Ying Chen, Kuo-Ming Wu
  • Patent number: 9755084
    Abstract: A semiconductor device having a novel structure is provided in which a transistor including an oxide semiconductor and a transistor including a semiconductor material which is not an oxide semiconductor are stacked. Further, a semiconductor device in which a semiconductor element and a capacitor are formed efficiently is provided. In a semiconductor device, a first semiconductor element layer including a transistor formed using a semiconductor material which is not an oxide semiconductor, such as silicon, and a second semiconductor element layer including a transistor formed using an oxide semiconductor are stacked. A capacitor is formed using a wiring layer, or a conductive film or an insulating film which is in the same layer as a conductive film or an insulating film of the second semiconductor element layer.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 5, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Yasuyuki Arai
  • Patent number: 9711448
    Abstract: A finger metal oxide metal capacitor including an outer conducting structure and an inner conducting structure. The outer conducting structure is defined in a plurality of metal layers and a plurality of via layers of an integrated circuit and includes first and second side portions. An inner conducting structure is defined in the plurality of metal layers and the plurality of via layers of the integrated circuit. Each of the outer conducting structure and the inner conducting structure includes respective finger sections extending in the plurality of metal layers. Oxide is arranged between the outer conducting structure and the inner conducting structure.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: July 18, 2017
    Assignee: Marvell International Ltd.
    Inventors: Hung Sheng Lin, Shingo Hatanaka, Shafiq M. Jamal
  • Patent number: 9711415
    Abstract: A semiconductor device having five gate stacks on different regions of a substrate and methods of making the same are described. The device includes a semiconductor substrate and isolation features to separate the different regions on the substrate. The different regions include a p-type field-effect transistor (pFET) core region, an input/output pFET (pFET IO) region, an n-type field-effect transistor (nFET) core region, an input/output nFET (nFET IO) region, and a high-resistor region.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: July 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jyun-Ming Lin, Wei Cheng Wu, Sheng-Chen Chung, Bao-Ru Young, Hak-Lay Chuang
  • Patent number: 9711682
    Abstract: The light emitting device includes a first conductive semiconductor layer; a second conductive semiconductor layer on the first conductive semiconductor layer; and an active layer between the first and second conductive semiconductor layers. The active layer includes a plurality of well layers and a plurality of barrier layers, wherein the well layers include a first well layer and a second well layer adjacent to the first well layer. The barrier layers include a first barrier layer disposed between the first and second well layers, and the first barrier layer includes a plurality of semiconductor layers having an energy bandgap wider than an energy bandgap of the first well layer. At least two layers of the plurality of semiconductor layers are adjacent to the first and second well layers, and have aluminum contents greater than that of the other layer.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 18, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Young Hun Han, Rak Jun Choi, Jeong Tak Oh
  • Patent number: 9698281
    Abstract: A method of manufacturing a semiconductor device includes forming at least one sacrificial layer on a substrate during a complementary metal-oxide-semiconductor (CMOS) process. An absorber layer is deposited on top of the at least one sacrificial layer. A portion of the at least one sacrificial layer beneath the absorber layer is removed to form a gap over which a portion of the absorber layer is suspended. The sacrificial layer can be an oxide of the CMOS process with the oxide being removed to form the gap using a selective hydrofluoric acid vapor dry etch release process. The sacrificial layer can also be a polymer layer with the polymer layer being removed to form the gap using an O2 plasma etching process.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 4, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Gary Yama, Ando Feyh, Ashwin Samarao, Fabian Purkl, Gary O'Brien
  • Patent number: 9679828
    Abstract: An electronic device may include a first substrate, an electrically conductive feed line on the first substrate, an insulating layer on the first substrate and the electrically conductive feed line, a second substrate on the insulating layer, and an antenna on the second substrate and having nanofilm layers stacked on the second substrate. The antenna is coupled to the feed line through an aperture.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 13, 2017
    Inventor: Amit Verma
  • Patent number: 9680051
    Abstract: A light emitting diode including a substrate, a p-type and n-type semiconductor layers, an active layer, an interlayer, an electron barrier layer, a first and a second electrodes are provided. The n-type semiconductor layer is disposed on the sapphire substrate. The active layer has an active region with a defect density greater than or equal to 2×107/cm2. The active layer is disposed between the n-type and p-type semiconductor layers. The wavelength of light emitted by the active layer is ?, and 222 nm???405 nm. The active layer includes i quantum barrier layers and (i?1) quantum wells, each quantum well is disposed between any two quantum barrier layers, and i?2. N-type dopant is doped in at least k layers of the i quantum barrier layers, wherein k is a natural number and k?1, when i even, k?i/2, and when i is odd, k?(i?1)/2.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: June 13, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Keng Fu, Yu-Hsuan Lu
  • Patent number: 9666764
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide multiple LED dies that are joined to a single carrier die. The multiple LED dies on the single carrier die are connected in series and/or in parallel by interconnection in the LED dies and/or in the single carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area. Related devices and fabrication methods are described.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 30, 2017
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, Kevin Haberern, Alan Wellford Dillon
  • Patent number: 9653643
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 16, 2017
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, David Todd Emerson, Joseph G. Clark, Christopher P. Hussell
  • Patent number: 9653561
    Abstract: A semiconductor device is provided having a dual dielectric layer structure defined by a thin dielectric layer adjacent to a thick dielectric layer. More particularly, a high voltage metal oxide semiconductor transistor having a dual gate oxide layer structure comprising a thin gate oxide layer adjacent to a thick oxide/thin oxide layer may be provided. Such structures may be used in extended drain metal oxide semiconductor field effect transmitters, laterally diffused metal oxide field effect transistors, or any high voltage metal oxide semiconductor transistor. Methods of fabricating an extended drain metal oxide semiconductor transistor device are also provided.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 16, 2017
    Assignee: Macronix International Co., Ltd.
    Inventors: Wing-Chor Chan, Shyi-Yuan Wu
  • Patent number: 9646985
    Abstract: A three-dimensional (3-D) non-volatile memory device includes channel structures each including channel layers stacked over a substrate and extending in a first direction, wherein the channel layers include well regions, respectively, vertical gates located and spaced from each other between the channel structures, and a well pick-up line contacting on the well regions of the channel layers and extending in a second direction crossing the channel structures.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 9, 2017
    Assignee: SK Hynix Inc.
    Inventors: Yoo Hyun Noh, Jong Moo Choi, Young Soo Ahn
  • Patent number: 9634197
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide multiple LED dies that are joined to a single carrier die. The multiple LED dies on the single carrier die are connected in series and/or in parallel by interconnection in the LED dies and/or in the single carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area. Related devices and fabrication methods are described.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 25, 2017
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, Kevin Haberern, Alan Wellford Dillon
  • Patent number: 9601553
    Abstract: An organic light-emitting display having an improved aperture ratio, the organic light-emitting display including a rear electrode, an opposite electrode, and a pixel electrode between the rear electrode and the opposite electrode. Here, an insulating layer is interposed between the pixel electrode and the rear electrode, wherein the pixel electrode, the insulating layer, and the rear electrode are configured as a capacitor of the organic light-emitting display. In such a structure, as the capacitor is disposed in a light-emitting area where the pixel electrode exists, it is not necessary to provide an additional space for a capacitor, thus improving an aperture ratio of the display.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 21, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: June-Woo Lee, Jong-Moo Huh, Joon-Hoo Choi