Patents Examined by Mark Hellner
  • Patent number: 11598909
    Abstract: Disclosed is a LiDAR window integrated optical filter that includes a window of a polymer material for absorbing a visible light band and transmitting a near-infrared band; and an upper reflective layer and a lower reflective layer formed on the upper surface and the lower surface of the window. The upper reflective layer and the lower reflective layer may be formed in a thin film including titanium dioxide (TiO2) and silicon dioxide (SiO2).
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: March 7, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation, OPTRONTEC CO., LTD
    Inventors: Kyoung-Chun Kweon, Seon-Yong An, Min-Seok Oh, Jang-Seob Kim, Jae-Bum Kim
  • Patent number: 11592292
    Abstract: A total station or a theodolite includes scanning functionality for optical surveying of an environment, in which the total station or the theodolite is configured such that direction-dependent active acquisition regions of the receiver are defined depending on the transmission direction of the transmitted radiation to adapt the receiver surface mechanically and/or electronically to a varying imaging position of the received radiation on the overall detector surface.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: February 28, 2023
    Assignee: HEXAGON TECHNOLOGY CENTER GMBH
    Inventors: Tim Mayer, Jürg Hinderling
  • Patent number: 11592560
    Abstract: A frequency-modulated continuous wave (FMCW) LIDAR can be configured to reduce re-reflection and cross-coupling in the FMCW LIDAR. A first laser can be configured to generate a ranging signal, and a second laser can be configured to generate a local oscillator signal. A feedback control can be configured to maintain an offset between the ranging signal and the local oscillator signal. The offset can be a non-zero value. A transmit portion configured to emit a reference laser signal based on the ranging signal into an environment. A receiver portion can be configured to receive a return laser signal from the environment. The return laser signal can be a reflected version of the reference laser signal. A receiver photodetector can be configured to combine the return laser signal and the local oscillator signal.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: February 28, 2023
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Paul Donald Schmalenberg, Yasuo Uehara
  • Patent number: 11592561
    Abstract: A LIDAR system is described for detecting surroundings, including a laser light source for emitting a laser light, a receiving device for receiving a laser light reflected by the surroundings, and a control device for activating the laser light source, the control device being configured to activate the laser light source for emitting a continuous light beam and to continually modulate the emitted light beam, so that the light beam includes a multitude of successive codes.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: February 28, 2023
    Assignee: Robert Bosch GmbH
    Inventor: Thomas Fersch
  • Patent number: 11592556
    Abstract: An object capturing device includes light emission, receiving, and scanning units, and distance calculation, and object determination units. The scanning unit measures light from the emission unit to head toward a measurement target space to perform scanning, and to guide reflected light from the object with respect to the measurement light to the receiving unit. The distance calculation unit calculates a distance to the object in association with a scanning angle of the scanning unit. The object determination unit determines whether the object is a capture target based on whether a scanning angle range within which a difference between distances is equal to or less than a predetermined threshold value corresponding to a reference scanning angle range of the capture target, and a determination of whether intensity distribution of the reflected light within the scanning angle range corresponds to reference intensity distribution of the reflected light from the capture target.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 28, 2023
    Assignee: HOKUYO AUTOMATIC CO., LTD.
    Inventors: Toshihiro Mori, Akihito Yamamoto, Masayuki Maeda, Takahiro Kasahara
  • Patent number: 11585930
    Abstract: Systems and methods for a silicon photonics integrated optical velocimeter are provided herein. In some embodiments, a method includes producing a laser output at a laser source; emitting the laser output from a plurality of emitters formed in an optical chip; receiving a plurality of reflected portions of the emitted laser output at an optical collector formed in the optical chip, wherein the plurality of reflected portions are reflected off of at least one surface; beating the laser output against the reflected portions of the emitted laser output, wherein one of the laser output or the reflected portions of the emitted laser output are modulated by at least one modulation frequency; and calculating a doppler shift for each of the plurality of reflected portions of the emitted laser output based on an output of the beating and the at least one modulation frequency.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: February 21, 2023
    Assignee: Honeywell International Inc.
    Inventors: Steven Tin, Matthew Wade Puckett, Chad Fertig
  • Patent number: 11585928
    Abstract: A LIDAR measuring device and a method for determining the speed of particles in a measuring volume includes a narrowband continuous wave laser light source (1), which emits light which is coupled into a measuring branch (3) and a reference branch (4). The light coupled into the measuring branch (3) is at least partially emitted by a transmitting device in the direction of the measuring volume such that the emitted light is at least partially scattered and/or reflected by the particles in the measuring volume. A part of the scattered and/or reflected light is then received by a receiver device and is coherently superimposed with the light leaving the reference branch (4), and the resulting light beam is directed onto a detector (6) to generate a detector signal characteristic for the resulting light beam. Finally, the speed of the particles in the measuring volume is determined in an evaluation unit (11) by taking into account the detector signal.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: February 21, 2023
    Assignee: METEK Meteorologische Messtechnik GmbH
    Inventors: Gerhard Peters, Ernst Brinkmeyer, Christoph Bollig
  • Patent number: 11588290
    Abstract: A system includes a light transmitter configured to emit a first light beam. The first light beam includes a primary portion and an amplified spontaneous emission (ASE) portion. The system also includes a host material configured to receive the first light beam and emit a second light. The host material is configured to generate the second light by depopulation of chromophores of one or more dopants in the host material caused by energy of the primary portion of the first light beam. The second light is continuous wave and speckle free.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: February 21, 2023
    Assignee: Raytheon Company
    Inventor: Holger M. Jaenisch
  • Patent number: 11585926
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least two up-chirp signals and at least two down-chirp signals toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least two up-chirp signals and the at least two down-chirp signals. The baseband signal includes a first set of peaks associated with the at least one up-chirp signal and a second set of peaks associated with the at least one down-chirp signal. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: February 21, 2023
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Carlo Giustini, Esha John, Jose Krause Perin, James Nakamura, Rajendra Tushar Moorti
  • Patent number: 11579271
    Abstract: A LIDAR noise removal apparatus and a LIDAR noise removal method thereof are provided. The apparatus includes a LIDAR detection information processor that processes LIDAR detection information received from a LIDAR of a vehicle. A sun position acquirer acquires an azimuth angle and elevation angle of the sun relative to a traveling direction of the vehicle. An ROI selector selects an ROI corresponding to the sun from a front image of the vehicle based on the azimuth angle and elevation angle and compares a brightness of the selected ROI with a threshold value. A noise region selector selects a noise region corresponding to the ROI from the LIDAR detection information based on the azimuth angle and elevation angle when the brightness of the ROI exceeds the threshold value, and a noise remover removes noise points in the selected noise region.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: February 14, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yoon Ho Jang, Soo Kyung Ryu
  • Patent number: 11579293
    Abstract: A method of compensation in a light detection and ranging (LIDAR) system. The method includes generating a digitally-sampled target signal. The method also includes compensating for ego-velocity and target velocity in the digitally-sampled target signal based on an estimated ego-velocity and an estimated target velocity to produce a compensated digitally-sampled target signal.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 14, 2023
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Esha John, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11581693
    Abstract: The disclosure relates to a pulsed laser driver that utilizes a high-voltage switch transistor to support a high output voltage for a laser, and a low-voltage switch transistor that switches between an ON state and an OFF state to generate a pulsed current that is supplied to the laser to generate an output pulsed laser signal. The pulsed laser driver switches the low-voltage switch transistor between the ON state and the OFF state according to an input pulsed signal such that the output pulsed laser signal is modulated according to the input pulsed signal. The pulsed laser driver also utilizes a feedback control module to control the gate terminal voltage of the high-voltage switch transistor to improve the precision of the output pulsed laser signal.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: February 14, 2023
    Assignee: Photonic Technologies (Shanghai) CO., LTD.
    Inventors: Shenglong Zhuo, Patrick Yin Chiang
  • Patent number: 11549799
    Abstract: Disclosed herein are self-mixing interferometry (SMI) sensors, such as may include vertical cavity surface emitting laser (VCSEL) diodes and resonance cavity photodetectors (RCPDs). Structures for the VCSEL diodes and RCPDs are disclosed. In some embodiments, a VCSEL diode and an RCPD are laterally adjacent and formed from a common set of semiconductor layers epitaxially formed on a common substrate. In some embodiments, a first and a second VCSEL diode are laterally adjacent and formed from a common set of semiconductor layers epitaxially formed on a common substrate, and an RCPD is formed on the second VCSEL diode. In some embodiments, a VCSEL diode may include two quantum well layers, with a tunnel junction layer between them. In some embodiments, an RCPD may be vertically integrated with a VCSEL diode.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 10, 2023
    Assignee: Apple Inc.
    Inventors: Fei Tan, Arnaud Laflaquiere, Chin Han Lin, Keith Lyon, Marc A. Drader, Weiping Li
  • Patent number: 11543533
    Abstract: Methods and systems for combining information from a first image captured of a scene via a first sensor and information from a second image captured of the scene via a second sensor wherein the first image and second image have at least one common field of view (FoV) and wherein the first image comprises pixels that are distributed according to a non-linear image point distribution function. The first image is corrected, before combining, based on said non-linear distribution function.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 3, 2023
    Assignee: LeddarTech Inc.
    Inventors: Robert Baribault, Pierre Olivier
  • Patent number: 11543531
    Abstract: A semi-automatic three-dimensional light detection and ranging (LIDAR) point cloud data annotation system and method for autonomous driving of a vehicle involve filtering 3D LIDAR point cloud and normalizing the filtered 3D LIDAR point cloud data relative to the vehicle to obtain normalized 3D LIDAR point cloud data, quantizing the normalized 3D LIDAR point cloud data by dividing it into a set of 3D voxels, projecting the set of 3D voxels to a 2D birdview, identifying a possible object by applying clustering to the 2D birdview projection, obtaining an annotated 2D birdview projection including annotations by a human annotator via the annotation system regarding whether the bounding box corresponds to a confirmed object and a type of the confirmed object, and converting the annotated 2D birdview projection to back into annotated 3D LIDAR point cloud data.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 3, 2023
    Assignee: FCA US LLC
    Inventors: Dalong Li, Alex Smith, Stephen Horton
  • Patent number: 11536837
    Abstract: A LIDAR system includes a LIDAR chip configured to combine a LIDAR input signal and a reference signal so as to generate a composite light signal. The LIDAR input signal includes light reflected by an object located off of the LIDAR chip. The reference signal does not include light reflected by the object. The system also includes electronics configured to use the composite light signal to approximate a radial velocity between the LIDAR chip and the object. The radial velocity is approximated from a difference between a first distance and a second distance. The first distance is the distance between the object and the LIDAR chip at a first time. The second distance is the distance between the object and the LIDAR chip at a second time.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: December 27, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Dazeng Feng, Mehdi Asghari
  • Patent number: 11536804
    Abstract: A Light Detection and Ranging (LIDAR) apparatus includes one or more optical elements configured to direct incident light in one or more directions, and a detector array including a plurality of detector pixels configured to output detection signals responsive to light provided thereto by the one or more optical elements. The light includes scattered light that is redirected relative to the one or more directions. A circuit is configured to receive the detection signals and generate corrected image data based on the detection signals and an expected spread function for the light. Related devices and methods of operation are also discussed.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 27, 2022
    Inventors: Brent Fisher, Dietrich Dehlinger
  • Patent number: 11536846
    Abstract: The present disclosure relates to an elevation detection system for an Autonomous Vehicle (AV) and a method for detecting elevation of surrounding of the AV. The elevation detection system includes an elevation sensor unit and a computation unit. The elevation sensor unit is configured to detect an elevation of a plurality of objects having a lower most elevation, in the surrounding of the AV to determine a boundary elevation of the road. The elevation sensor unit is vertically movable within a range of vertical positions. A Light Detection and Ranging (LIDAR) sensor unit is associated with the elevation sensor unit, to detect the surrounding of the AV, having a predefined Field of View (FoV). The computation unit determines a lower limit value of the FoV and provides it to the LIDAR sensor unit for accurately detecting obstacles in the road.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 27, 2022
    Assignee: Wipro Limited
    Inventors: Balaji Sunil Kumar, Manas Sarkar
  • Patent number: 11525904
    Abstract: A time-of-flight ranging system disclosed herein includes a receiver asserting a photon received signal in response to detection of light that has reflected off a target and returned to the time-of-flight ranging system. A first latch circuit has first and second data inputs receiving a first pair of differential timing references, the first latch circuit latching data values at its first and second data inputs to first and second data outputs based upon assertion of the photon received signal. A first counter counts latching events of the first latch circuit during which the first data output is asserted, and a second counter counts latching events of the first latch circuit during which the second data output is asserted. Processing circuitry determines distance to the target based upon counted latching events output from the first and second counters.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 13, 2022
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventors: John Kevin Moore, Neale Dutton
  • Patent number: 11525677
    Abstract: The present invention relates to a surveying apparatus for surveying an object as well as a surveying system comprising the surveying apparatus having a simple and compact optical setup. The surveying apparatus comprises a lens arrangement including at least one movably arranged focus lens element for focusing to sight an object; an imaging unit configured to obtain an image of at least a part of the object; a distance measuring unit configured to measure a distance to the object along the optical axis of the distance measuring unit; and a beam splitter/combiner configured to combine a part of the optical imaging path of the imaging unit and a part of the optical distance measuring path of the distance measuring unit so that the optical axis of the imaging unit and the optical axis of the distance measuring unit are at least coaxially arranged with the optical axis of the lens arrangement between the lens arrangement and the beam splitter/combiner.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 13, 2022
    Assignee: Trimble Jena GmbH
    Inventors: Michael Vogel, Rolf Richter, Thomas Metz, Andreas Glimm, Torsten Kludas, Ute Natura