Patents Examined by Marla D McConnell
  • Patent number: 8987585
    Abstract: A solar cell according to an embodiment includes a pattern layer arranged on a substrate and including a uneven pattern; a back electrode arranged on the pattern layer; a light absorption layer arranged on the back electrode; a buffer layer on the light absorption layer; and a front layer arranged on the buffer layer. The method fabricating a solar cell according to an embodiment includes forming a pattern layer including a uneven pattern on a substrate; forming a back electrode on the pattern layer; forming a light absorption layer on the back electrode; forming a buffer layer on the light absorption layer; and forming a front electrode on the buffer layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 24, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dong Keun Lee
  • Patent number: 8884156
    Abstract: A solar energy harvesting system including a sunlight concentrating member (e.g., a lens array) for focusing direct sunlight at predetermined focal points inside a waveguide containing a stimuli-responsive material (SRM) that is evenly distributed throughout the waveguide material such that the SRM assumes a relatively high transparency state away from the focused sunlight, and small light-scattering portions of the SRM change to a relatively opaque (light scattering) state only in focal zone regions adjacent to the concentrated sunlight. The outer waveguide surfaces are locally parallel (e.g., planar) and formed such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent waveguide material, and outcoupled to one or more solar energy receivers (e.g., PV cells) that are disposed outside the waveguide (e.g., along the peripheral edge).
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: November 11, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Patent number: 8816195
    Abstract: A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 26, 2014
    Assignee: The Boeing Company
    Inventors: Adam P. Plesniak, Guy L. Martins
  • Patent number: 8772629
    Abstract: The present invention relates to organic optoelectronic devices and, in particular, to organic photovoltaic devices having a fiber structure. In one embodiment, a photovoltaic device comprises a first electrode comprising an indium tin oxide fiber, at least one photosensitive organic layer surrounding the first electrode and electrically connected to the first electrode, and a second electrode surrounding the organic layer and electrically connected to the organic layer.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 8, 2014
    Assignees: Wake Forest University, Arrowhead Center, Inc.
    Inventors: Seamus A. Curran, David L. Carroll, James Lee Dewald, Sr.
  • Patent number: 8759666
    Abstract: An apparatus includes a photovoltaic device (PVD) having a quantum dot (QD) array structure that is capable of performing wavelength conversion. The PVD is configured to generate charge carriers from incident photons. An electric field generator is operable to apply an electric field to the PVD. Strength of the electric field is sufficient to cause the charge carriers to transition through a plurality of discrete energy states formed within a corresponding one of a conductive band and a valence band of the QD array structure. The transition of the charge carriers through the plurality of discrete energy states enables the PVD to generate emitted photons being radiated as an electromagnetic wave. A frequency (and hence wavelength) of the emitted photons being radiated as the electromagnetic wave is tunable by configuring physical attributes of the QD array structure and controlling the electric field strength.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 24, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Matthew H. Evans
  • Patent number: 8629345
    Abstract: A solar receiver including a housing defining an internal volume divided into at least a first chamber and a second chamber, wherein the second chamber is in fluid communication with the first chamber, the housing further defining a first opening into the first chamber, a second opening into the first chamber and a third opening into the second chamber, a generally transparent cover connected to the housing to generally seal the first opening, and a thermal energy storage material received in the first chamber, the thermal energy storage material including a thermally conductive material defining an internal chamber and a salt received in the internal chamber.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: January 14, 2014
    Assignee: The Boeing Company
    Inventor: Mark D. Bennett
  • Patent number: 8614393
    Abstract: A new photovoltaic (PV) cell structure, prepared on transparent substrate with transparent conductive oxide (TCO) layer and having nanorod zinc oxide layer. The cell has a thin conductive layer of doped zinc oxide deposited on the nanorod zinc oxide layer, an extremely thin blocking layer of titanium oxide or indium sulfide on the thin conductive layer, a buffer layer of indium sulfide on the extremely thin blocking layer, an absorber layer, comprising copper indium disulfide on said buffer layer and one electrode attached to the transparent conductive oxide layer and a second electrode attached to the absorber layer. Also, a method of preparing a zinc oxide nanorod PV cell entirely by chemical spray pyrolysis is disclosed. Efficiency up to 3.9% is achieved by simple continuous non-vacuum process.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: December 24, 2013
    Assignee: Tallinn University of Technology
    Inventors: Malle Krunks, Atanas Katerski, Tatjana Dedova, Arvo Mere, Ilona Oja Acik
  • Patent number: 8609974
    Abstract: A system and method is presented that uses solar power driven expansion of an electrolytic solution to force the electrolytic solution from a container through at least one pore of an insulator having a fixed surface charge of one polarity into a collection receptacle. The velocities of the cations and anions flowing through the pore differ because of the fixed surface charge of the pore and this produces an electrical charge separation, the streaming potential, as a source of electrical power. Energy absorption spans the full solar spectrum including infrared, visible and near ultraviolet wavelengths.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 17, 2013
    Inventor: Michael E. Starzak
  • Patent number: 8598445
    Abstract: A means of providing solar powered electricity for day and nighttime use supported in part by power from the grid to allow a small generator to electrify the home or business with a small generator operating with much larger capacity. Excess solar energy is provided to the power company as needed.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: December 3, 2013
    Inventors: Jon Murray Schroeder, Gerald Philip Hirsch
  • Patent number: 8575468
    Abstract: A solar AMTEC power system including a support structure, an electric generator segment connected to the support structure, the electric generator segment including a receiver and at least two wings extending at a non-zero angle relative to the receiver, wherein each wing defines an enclosed volume divided into a hot chamber and a cold chamber and includes at least one AMTEC cell extending between the hot chamber and the cold chamber, and wherein the receiver is at least partially transparent to solar energy and defines a heated chamber and a fluid return chamber, the fluid return chamber being in fluid communication with the heated chamber and the cold chambers of the wings, and the heated chamber being in fluid communication with the hot chambers of the wings, and an optical element positioned relative to the electric generator segment to direct solar energy to the receiver.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: November 5, 2013
    Assignee: The Boeing Company
    Inventor: Mark D. Bennett
  • Patent number: 8558103
    Abstract: Exemplary embodiments provide a solar cell device, and method for forming the solar cell device by integrating a switch component into a solar cell element. The solar cell element can include a solar cell, a solar cell array and/or a solar cell panel. The integrated solar cell element can be used for a solar sensor, while the solar sensor can also use discrete switches for each solar cell area of the sensor. Exemplary embodiments also provide a connection system for the solar cell elements and a method for super-connecting the solar cell elements to provide a desired connection path or a desired power output through switch settings. The disclosed connection systems and methods can allow for by-passing underperforming solar cell elements from a plurality of solar cell elements. In embodiments, the solar cell element can be extended to include a battery or a capacitor.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: October 15, 2013
    Assignee: Intersil Americas Inc.
    Inventor: Stephen Joseph Gaul
  • Patent number: 8552286
    Abstract: A method for controlling a photovoltaic (PV) panel in a PV system including a computing device that provides motor control signals and implements an iterative adaptive control (IAC) algorithm for adjusting an angle of the PV panel. The IAC algorithm relates P at a current time k (P(k)), an elevation angle of the PV panel at k (?S (k)), P after a next step (P(k+1)) and an elevation angle of the PV panel at k+1 (?S (k+1)). The algorithm generates a perturbed power value P(k+1) to provide a power perturbation to P(k), and calculates ?S (k+1) using P(k+1). The motor control signals cause the motor to position the PV panel to achieve ?S (k+1). A change in P resulting from the positioning is compared to a predetermined change limit, and only if the change in P is ? the change limit, again sensing P, and repeating the generating, calculating and positioning.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 8, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Wasfy Mikhael, Raghuram Ranganathan, Nasser Kutkut, Issa Batarseh
  • Patent number: 8492645
    Abstract: A transportable, self-contained, solar power system comprised of a plurality of individual solar power arrays, each array being contained within a transportable frame. Each array is folded into a frame during transportation. Upon reaching a desired location, the frame is positioned at a desired location. The frame then acts as a base while its solar power array is activated and deployed. The array has the capability of tracking the position of the sun during deployment. Each frame has a global positioning system (GPS) and a controller containing a chart of sun locations for a given location. The controller positions a frame's solar array to maximize the array's exposure to the sun. Each frame has a battery system, enabling a frame's solar array to self-start after a period of darkness.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 23, 2013
    Inventor: Michael Strahm
  • Patent number: 8476523
    Abstract: A roofing tile solar power generation system includes an array of solar panel ready tiles installed upon the roof of a house and that delivers power to a central control unit and that may be controlled either locally by a computing system or remotely via a server. The solar panel ready tiles include a solar panel ready tile body having a cavity to receive a solar panel and electrical connects to service same. The solar panel ready tile includes communication pathway connection plugs. The cavity receives a solar panel. A cover may protect the solar panel or the cavity prior to installation of the solar panel. The solar panel ready system may also optionally have sub-panel control system, consisting of one or more of their own power bus interface, communication interface, memory, power status indicators and lighting modules, plurality of sensors and a processing unit.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: July 2, 2013
    Assignee: Enpulz, L.L.C.
    Inventor: James D. Bennett
  • Patent number: 8450602
    Abstract: A solar cell comprises a substrate that includes a photoelectric conversion function, a first electrode provided on one surface of the substrate, a second electrode provided on other surface of the substrate, and a third electrode provided on the other surface of the substrate with its periphery overlapping the second electrode in the in-plane direction of the substrate for extracting an electric power from the second electrode. The thickness of the second electrode is larger than that of the third electrode, and the difference between the thickness of the second electrode and that of the third electrode is within a range from equal to or more than 10 micrometers to equal to or less than 30 micrometers. Thereby, in the solar cell, an electrode separation (alloy separation) can be effectively prevented.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: May 28, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shoichi Karakida, Takahiko Nishida, Mitsunori Nakatani, Hiroaki Morikawa
  • Patent number: 8410354
    Abstract: Higher conversion efficiency and productivity of photoelectric conversion devices. A semiconductor layer including a first and second crystal regions grown in the layer-deposition direction is provided between an impurity semiconductor layer containing an impurity element imparting one conductivity type and an impurity semiconductor layer containing an impurity element imparting a conductivity type opposite to the one conductivity type. The first crystal region is grown from the interface between one of the impurity semiconductor layers and the semiconductor layer. The second crystal region is grown toward the interface between the semiconductor layer and the other of the impurity semiconductor layers from a position which is away from the interface between the one of the impurity semiconductor layers and the semiconductor layer. The semiconductor layer including the first and second crystal regions which exist in an amorphous structure forms the main part of a region for photoelectric conversion.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: April 2, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8382964
    Abstract: A solar-powered pool skimmer is disclosed. The solar-powered skimmer may include lid having an upper surface and a lower surface, and a solar cell affixed to the upper surface of the lid. A pair of electrodes is electrically affixed to the terminals of the solar cell, and is each capable of being stored in a retracted position and moved to an extended position.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: February 26, 2013
    Inventor: Kevin Boedecker
  • Patent number: 8354582
    Abstract: A means of providing solar powered electricity for day and nighttime use supported in part by power from the grid to allow a small generator to electrify the home or business with a small generator operating with much larger capacity. Excess solar energy is provided to the power company as needed.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 15, 2013
    Inventors: Jon Murray Schroeder, Gerald Philip Hirsch
  • Patent number: 8338695
    Abstract: A system controller for position controlling a photovoltaic (PV) panel in a PV system including a power sensor sensing output power (P), and a motor for positioning the PV panel. The system controller includes a computing device having memory that provides motor control signals and implements an iterative adaptive control (IAC) algorithm stored in the memory for adjusting an angle of the PV panel. The IAC algorithm includes an iterative relation that relates P at current time k (P(k)), its elevation angle at k (?s (k)), P after a next step (P(k+1)) and its elevation angle at k+1 (?s (k+1)). The IAC algorithm generates a perturbed power value P(k+1) to provide a power perturbation to P(k), and calculates a position angle ?S (k+1) of the PV panel using the perturbed power value. The motor control signals from the computing device cause the motor to position the PV panel to achieve ?S (k+1).
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: December 25, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Wasfy Mikhael, Raghuram Ranganathan, Nasser Kutkut, Issa Batarseh
  • Patent number: 8273983
    Abstract: A photonic device, a method of making the device and a nano-scale antireflector employ a bramble of nanowires. The photonic device and the method include a first layer of a microcrystalline material provided on a substrate surface and a second layer of a microcrystalline material provided on the substrate surface horizontally spaced from the first layer by a gap. The photonic device and the method further include, and the nano-scale antireflector includes, the bramble of nanowires formed between the first layer and the second layer. The nanowires have first ends integral to crystallites in each of the first layer and the second layer. The nanowires of the bramble extend into the gap from each of the first layer and the second layer.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: September 25, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, R. Stanley Williams, Nobuhiko Kobayashi