Patents Examined by Masudur Rahman
  • Patent number: 11974553
    Abstract: Described herein are compositions (e.g. cells and transgenic animals) and methods relating to engineered Ig loci that permit expression of particular antibodies or antibody segments while still permitting recombination and/or maturation process for antibody optimization.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: May 7, 2024
    Assignee: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Frederick W. Alt, Hwei-Ling Cheng, Ming Tian
  • Patent number: 11938159
    Abstract: The present disclosure relates to a group B adenovirus comprising a sequence of formula (I): 5?ITR-B1-BA-B2-BX-BB-BY-B3-3?ITR wherein: B1 is bond or comprises: E1A, E1B or E1A-E1B; BA comprises-E2B-L1-L2-L3-E2A-L4; B2 is a bond or comprises: E3; BX is a bond or a DNA sequence comprising: a restriction site, one or more transgenes or both; BB comprises L5; BY is a bond or a DNA sequence comprising: a restriction site, one or more transgenes or both; B3 is a bond or comprises: E4; wherein at least one of BX or BY is not a bond, pharmaceutical compositions comprising the same and use of the viruses and compositions in treatment, particularly in the treatment of cancer. The disclosure also extends to plasmids and processes employed to prepare the said viruses.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 26, 2024
    Assignee: AKAMIS BIO LIMITED
    Inventors: Brian Robert Champion, Alice Claire Noel Brown, Kerry David Fisher, Tamara Nicolson
  • Patent number: 11873511
    Abstract: The invention pertains to the field of adaptive cell immunotherapy. It provides with the genetic insertion of exogenous coding sequence(s) that help the immune cells to direct their immune response against infected or malignant cells. These exogenous coding sequences are more particularly inserted under the transcriptional control of endogenous gene promoters that are sensitive to immune cells activation. Such method allows the production of safer immune primary cells of higher therapeutic potential.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: January 16, 2024
    Assignee: CELLECTIS
    Inventors: Brian Busser, Philippe Duchateau, Alexandre Juillerat, Laurent Poirot, Julien Valton
  • Patent number: 11866729
    Abstract: The present invention discloses an in vitro method for the generation of a cell composition comprising or consisting of ventral midbrain dopaminergic progenitor cells from a cell composition comprising pluripotent and/or multipotent stem cells, the method comprising the steps of A) differentiating said pluripotent and/or multipotent stem cells into ventral dopaminergic progenitor cells, thereby generating a cell composition comprising ventral dopaminergic progenitor cells comprising ventral midbrain dopaminergic progenitor cells and ventral hindbrain dopaminergic progenitor cells, and B) Enriching CD117 positive cells from said cell composition comprising ventral dopaminergic progenitor cells by using an antigen binding molecule specific for the CD117 antigen, thereby generating said cell composition comprising or consisting of ventral midbrain dopaminergic progenitor cells. Cell compositions obtainable by said method are also disclosed.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 9, 2024
    Assignee: MILTENYI BIOTEC B.V. & CO. KG
    Inventors: Andreas Bosio, Andrej Smiyakin
  • Patent number: 11820996
    Abstract: The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 21, 2023
    Assignee: CELLECTIS
    Inventors: Laurent Poirot, David Sourdive, Philippe Duchateau, Jean-Pierre Cabaniols
  • Patent number: 11771069
    Abstract: Described herein are compositions (e.g. cells and transgenic animals) and methods relating to engineered Ig loci that permit expression of particular antibodies or antibody segments while still permitting recombination and/or maturation process for antibody optimization.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 3, 2023
    Assignee: CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Frederick W. Alt, Hwei-Ling Cheng, Ming Tian
  • Patent number: 11723925
    Abstract: There is described a chimeric antigen receptor (CAR) which comprises an antigen binding domain which selectively binds to Receptor Tyrosine Kinase Like Orphan Receptor 1 (ROR1), and its use. Also described is a T cell comprising the CAR and its use in the treatment of cancer.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 15, 2023
    Assignee: UCL Business LTD
    Inventors: Amit Nathwani, Satyen Gohil, Marco Della Peruta