Patents Examined by Matthew J Song
  • Patent number: 11618971
    Abstract: A crystal puller apparatus comprises a pulling assembly to pull a crystal from a silicon melt at a pull speed; a crucible that contains the silicon melt; a heat shield above a surface of the silicon melt; a lifter to change a gap between the heat shield and the surface of the silicon melt; and one or more computing devices to determine an adjustment to the gap using a Pv-Pi margin, at a given length of the crystal, in response to a change in the pull speed. The computer-implemented method by a computing device comprises determining a pull-speed command signal to control a diameter of the crystal; determining a lifter command signal to control a gap between a heat shield and a surface of a silicon melt from which the crystal is grown; and determining an adjustment to the gap, in response to a different pull-speed, using a Pv-Pi margin.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 4, 2023
    Assignee: SUMCO Corporation
    Inventors: Keiichi Takanashi, Ippei Shimozaki
  • Patent number: 11603603
    Abstract: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is H2, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 14, 2023
    Assignee: United States of Americas as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11598020
    Abstract: An apparatus pulls a single crystal of semiconductor material by the Czochralski (CZ) method from a melt. The apparatus includes: a crucible that accommodates the melt; a resistance heater around the crucible; a camera system for observing a phase boundary between the melt and a growing single crystal, the camera system having an optical axis; a heat shield in frustoconical form with a narrowing diameter in a region at its lower end and arranged above the crucible and surrounding the growing single crystal; and an annular element, which is configured to capture particles, that projects inward from an inner side face of the heat shield and has an arrestor edge directed upward at an inner end of the annular element. The optical axis of the camera system runs between the arrestor edge and the growing single crystal. The annular element is releasably connected to the heat shield.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 7, 2023
    Assignee: SILTRONIC AG
    Inventor: Alexander Molchanov
  • Patent number: 11591712
    Abstract: The invention relates to a method for growing a bulk single crystal, wherein the method comprises the steps of inserting a starting material into a crucible, melting the starting material in the crucible by heating the starting material, arranging a thermal insulation lid at a distance above a melt surface of said melt such that at least a central part of the melt surface is covered by the lid, and growing the bulk single crystal from the melt by controllably cooling the melt with the thermal insulation lid arranged above the melt surface.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: February 28, 2023
    Assignees: FORSCHUNGSVERBUND BERLIN E.V., CORNELL UNIVERSITY
    Inventors: Christo Guguschev, Mario Brutzam, Darrell Schlom, Hanjong Paik
  • Patent number: 11591228
    Abstract: A compound strontium fluoroborate, nonlinear optical crystal of strontium fluoroborate, preparation method thereof; the chemical formula of the compound is SrB5O7F3, its molecular weight is 310.67, and it is prepared by solid-state reaction; the chemical formula of the crystal is SrB5O7F3, its molecular weight is 310.67, the crystal is of the orthorhombic series, the space group is Ccm21, and the crystal cell parameters are=10.016(6) ?, b=8.654(6)(4) ?, c=8.103(5) ?, Z=4, and V=702.4(8) ?3. A SrB5O7F3 nonlinear optical crystal has uses in the preparation of a harmonic light output when doubling, tripling, quadrupling, quintupling, or sextupling the frequency of a 1064-nm fundamental-frequency light outputted by a Nd:YAG laser, or the generation of a deep-ultraviolet frequency doubling light output lower than 200 nm, or in the preparation of a frequency multiplier, upper or lower frequency converter, or an optical parametric oscillator.
    Type: Grant
    Filed: February 11, 2018
    Date of Patent: February 28, 2023
    Assignee: XINJIANG TECHNICAL INSTITUTE OF PHYSICS & CHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Shilie Pan, Miriding Mutailipu, Min Zhang
  • Patent number: 11587792
    Abstract: A method for manufacturing an ingot block in which an ingot of a silicon single crystal pulled up by a Czochralski process is cut and subjected to outer periphery grinding to manufacture an ingot block of the silicon single crystal, the method including: a step of measuring a radial center position of the ingot at one or more locations along a longitudinal direction of the ingot, a step of setting a reference position at which an offset amount of the measured radial center position of the ingot is equal to or less than a predetermined eccentricity amount, a step of cutting the ingot into the ingot blocks based on the set reference position, and a step of performing outer periphery grinding on each of the cut ingot blocks.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 21, 2023
    Assignee: SUMCO CORPORATION
    Inventor: Yasuhiro Saito
  • Patent number: 11578423
    Abstract: A magnet coil for magnetic Czochralski single crystal growth includes: a first coil, a second coil, and an auxiliary coil arranged between the first coil and the second coil. A distance between the first coil and a first edge of the auxiliary coil close to the first coil is equal to a distance between the second coil and a second edge of the auxiliary coil close to the second coil. The auxiliary coil, the first coil and the second coil have a common central axis. When being energized, a direction of a current in the first coil is opposite to a direction of a current in the second coil, and a magnetic field generated by a current in the auxiliary coil is used for enhancing a cusp magnetic field between the first coil and the second coil.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: February 14, 2023
    Assignee: Suzhou Bama Superconductive Technology Co., Ltd.
    Inventors: Hongming Tang, Linjian Fu, Liming Liu, Saibo Liu
  • Patent number: 11535951
    Abstract: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is Hz, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: December 27, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11486039
    Abstract: Disclosed herein are laser-assisted metal-organic chemical vapor deposition devices and methods of use thereof.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: November 1, 2022
    Assignee: Ohio State Innovation Foundation
    Inventors: Hongping Zhao, Zhaoying Chen
  • Patent number: 11486054
    Abstract: A method for growing a crystal boule includes the steps of: periodically pulling upwardly a seed crystal dipped into a melt in a crucible to grow a first neck of the crystal boule below the seed crystal; and continuously pulling upwardly the seed crystal and the first neck of the crystal boule to grow a second neck of the crystal boule below the first neck.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: November 1, 2022
    Assignee: Fujian Jing'an Optoelectronics Co., Ltd.
    Inventors: Qiankun Liu, Fan Qi, Fengbo Wu, Jianyun Yu, Pin-Hui Hsieh
  • Patent number: 11447890
    Abstract: A crystal growth apparatus including: a heat source, a crucible including a container body in which a raw material can be received and a lid part on which a seed crystal can be mounted; a first heat insulating part which is disposed externally of the crucible and in which a first through-hole penetrating in a thickness direction is provided; a second heat insulating part which is disposed externally of the first heat insulating part and in which a second through-hole penetrating in a thickness direction is provided; a moving mechanism configured to move the first heat insulating part and the second heat insulating part relative to each other; and a radiation type temperature measuring unit configured to measure a temperature of the crucible via the first through-hole and the second through-hole.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: September 20, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Shunsuke Noguchi
  • Patent number: 11440849
    Abstract: In the present invention, in producing a SiC single crystal in accordance with a solution method, a crucible containing SiC as a main component and having an oxygen content of 100 ppm or less is used as the crucible to be used as a container for a Si—C solution. In another embodiment, a sintered body containing SiC as a main component and having an oxygen content of 100 ppm or less is placed in the crucible to be used as a container for a Si—C solution. The SiC crucible and SiC sintered body are obtained by molding and baking a SiC raw-material powder having an oxygen content of 2000 ppm or less. SiC, which is the main component of these, serves as a source for Si and C and allows Si and C to elute into the Si—C solution by heating.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 13, 2022
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naofumi Shinya, Yu Hamaguchi, Norio Yamagata, Osamu Yamada, Takehisa Minowa
  • Patent number: 11441236
    Abstract: Chamber components for an epitaxial growth apparatus are disclosed. A reaction chamber defined and formed by a ceiling plate. A reactant gas is rectified in a reactant gas supply path disposed in the side wall, so that a horizontal component in a flow direction of the reactant gas in the reaction chamber corresponds to a horizontal component in a direction extending from the center of an opening of the reactant gas supply path. Improvements to the upper side wall, susceptor and rectification plate of the epitaxial growth apparatus have resulted in improvements to the uniformity and formation speed of the epitaxial layer formed on substrates resulting in higher throughput and lower defects.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shinichi Oki, Yoshinobu Mori
  • Patent number: 11434583
    Abstract: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is H2, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: September 6, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11434584
    Abstract: Disclosed herein is an apparatus for growing a single crystal metal-oxide epi wafer, including a reaction chamber having an internal space, a substrate mounting unit disposed in the internal space and allowing a substrate to be mounted thereon, a metal-oxide treating unit treating a metal-oxide to supply metal ions and oxygen ions generated from the metal-oxide to the substrate, and an arsenic supply unit installed to face the substrate and supplying arsenic ions to the substrate, wherein the metal-oxide treating unit includes a mount disposed to face the substrate in the internal space and allowing a zinc oxide plate which is the metal-oxide to be installed thereon, and an electron beam irradiator irradiating the zinc oxide plate with an electron beam in a direct manner to cause zinc ions and oxygen ions evaporated from the zinc oxide plate to move toward the substrate.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 6, 2022
    Assignee: T.O.S Co., Ltd.
    Inventors: Bum Ho Choi, Seung Soo Lee, Yeong Geun Jo, Yong Sik Kim
  • Patent number: 11427925
    Abstract: The present application provides an apparatus and a method for ingot growth. The apparatus for ingot growth comprises a growth furnace, a crucible, a heater, a lifting mechanism, an infrared detector, a dividing disc, a sensor and a control device. The crucible is located within the growth furnace. The lifting mechanism comprises a lifting wire and a driving device, wherein the lifting wire connects to the top of the ingot via one terminal and to the driving device via another terminal. The bottom of the ingot puts inside the crucible, and the ingot has plural crystal lines thereon. The infrared detector is located outside the growth furnace. The dividing disc is above the growth furnace, connects to the lifting mechanism, and rotates with the ingot synchronously under the driving of the lifting mechanism, and an orthographic projection of bisector of the dividing disc is between two adjacent crystal lines. The sensor is located on the periphery of the dividing disc.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: August 30, 2022
    Assignee: Zing Semiconductor Corporation
    Inventor: Xuliang Zhao
  • Patent number: 11421342
    Abstract: Provided is a method of decomposing a quartz sample, which includes contacting a liquid in which at least a part of a quartz sample to be analyzed is immersed with a gas generated from a mixed acid to decompose at least a part of the quartz sample, wherein the liquid is a liquid containing at least water; and the mixed acid is a mixed acid of hydrogen fluoride and sulfuric acid, and a mole fraction of sulfuric acid in the mixed acid ranges from 0.07 to 0.40.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: August 23, 2022
    Assignee: SUMCO CORPORATION
    Inventors: Hirokazu Kato, Takashi Muramatsu
  • Patent number: 11421322
    Abstract: Embodiments of a blocker plate for use in a substrate process chamber are disclosed herein. In some embodiments, a blocker plate for use in a substrate processing chamber configured to process substrates having a given diameter includes: an annular rim; a central plate disposed within the annular rim; and a plurality of spokes coupling the central plate to the annular rim.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 23, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaoxiong Yuan, Yu Lei, Yi Xu, Kazuya Daito, Pingyan Lei, Dien-Yeh Wu, Umesh M. Kelkar, Vikash Banthia
  • Patent number: 11414779
    Abstract: Provided is a gemstone growing device including: a first pipe; a second pipe disposed below the first pipe and connected to the first pipe; a third pipe configured to surround the second pipe; a mixed material input part disposed in the first pipe; an oxygen input pipe connected to the first pipe; a first hydrogen input pipe connected to the third pipe; and a muffle disposed below the third pipe.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 16, 2022
    Assignee: VIEA LOGIS CO., LTD.
    Inventor: Chul-Hong Choi
  • Patent number: 11414778
    Abstract: Methods for growing a single crystal silicon ingot are disclosed. A dynamic state chart that monitors a plurality of ingot growth parameters may be produced and used during production of single crystal silicon ingots. In some embodiments, the dynamic state chart is a dynamic circle map chart having a plurality of sectors with each sector monitoring an ingot growth parameter.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: August 16, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Giorgio Agostini, Stephan Haringer, Marco Zardoni