Patents Examined by Matthew Keogh
  • Patent number: 8927806
    Abstract: The present invention relates to the isolation, purification, characterization and use of the plant Snf1-related protein kinase (SnRK) gene and genetic products. The invention includes isolated and purified SnRK DNA and relates to methods of regulating water loss and plant drought tolerance, sucrose content, starch content, seed oil content, fatty acid synthesis, seed oil acyl composition, seed size/weight, resistance/tolerance to biotic stresses, increased root biomass, and/or carbon flux into other seed components, plant, using the gene, and to tissues and plants transformed with the gene. The invention also relates to transgenic plants, plant tissues and plant seeds having a genome containing an introduced DNA sequence of the invention, and a method of producing such plants and plant seeds.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 6, 2015
    Assignee: DowAgroSciences, LLC
    Inventors: Zhifu Zheng, Thomas W. Greene
  • Patent number: 8921652
    Abstract: The specification relates to plants and their seeds and oil obtained therefrom, and to methods of producing same comprising oil having modified fatty acid compositions, such that 28% to 80% of the total fatty acid content in the seedoil is palmitic acid, 0% to 16% is palmitoleic acid, 0% to 4% is C16:2 fatty acid, 3% to 33% is stearic acid, 1% to 40% is oleic acid, 4% to 50% is linoleic acid and 0% to 10% is linolenic acid. The specification describes nucleic acid molecules encoding RNA capable of conferring these properties, in particular, RNA that inhibits expression of an oil biosynthesis gene encoding KASII in seeds of a plant. Genetic constructs and cells comprising the nucleic acid molecules are also described and claimed.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 30, 2014
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Qing Liu, Allan Graham Green, Surinder Pal Singh
  • Patent number: 8921112
    Abstract: Disclosed herein are zinc fingers comprising CCHC zinc coordinating residues. Also described are zinc finger proteins and fusion proteins comprising these CCHC zinc fingers as well as polynucleotides encoding these proteins. Methods of using these proteins for gene editing and gene regulation are also described.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: December 30, 2014
    Assignees: Dow AgroSciences LLC, Sangamo BioSciences, Inc.
    Inventors: Qihua C. Cai, Vipula K. Shukla, Joseph F. Petolino, Lisa W. Baker, Robbi J. Garrison, Ryan C. Blue, Jon C. Mitchell, Nicole L. Arnold, Sarah E. Worden, Jeffrey Miller, Fyodor Urnov
  • Patent number: 8912392
    Abstract: Methods and compositions for altering the genome of a monocot plant cell, and a monocot plant are disclosed. The methods and compositions use a double-strand break inducing agent to alter a monocot plant or plant cell genomic sequence comprising a recognition sequence for the double-strand break inducing agent.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 16, 2014
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventors: L. Aleksander Lyznik, Yumin Tao, Huirong Gao
  • Patent number: 8901374
    Abstract: The invention provides isolated nucleic acid molecules which encode novel fatty acid dehydratase family members. The invention also provides recombinant expression vectors containing dehydratase nucleic acid molecules, host cells into which the expression vectors have been introduced, and methods for large-scale production of long chain polyunsaturated fatty acids (LCPUFAs), e.g., SDA, EPA and DHA.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: December 2, 2014
    Assignees: BASF Plant Science GmbH, Bioriginal Food & Science Corp.
    Inventors: Jörg Bauer, Xiao Qiu, Patricia Vrinten
  • Patent number: 8889950
    Abstract: The present invention relates to methods that may be used to improve or modify nutrient sensing, absorption, metabolism, root growth, stomatal conductance, N use efficiency, C and N metabolism, plant biomass production and seed yield. More specifically, this invention is related to the glutamate receptors (GLRs) and their role(s) in nutrient sensing, metabolism, regulation of growth, development, and yield.
    Type: Grant
    Filed: July 28, 2007
    Date of Patent: November 18, 2014
    Assignee: The George Washington University
    Inventors: Sivasubramanian Balasubramanian, Frank J. Turano
  • Patent number: 8889949
    Abstract: The present invention relates to a method for increasing resistance of monocot plants against abiotic stress which comprises a step of transforming monocot plants with a recombinant plasmid containing a fused gene (TPSP) of trehalose-6-phosphate synthetase (TPS) gene and trehalose-6-phosphate phosphatase (TPP) gene to express the TPSP gene while maintaining normal growth and development characteristics. The present invention can increase the resistance of monocot plants against various stresses so that it can greatly contribute to the improvement of production and quality of valuable agricultural crops. The present invention also relates to a transgenic monocot plant, plant cell, or protoplast transformed with a nucleic acid encoding an enzyme for trehalose biosynthesis, under control of an inducible promoter, that increases tolerance to low temperature, salt, and water stress.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 18, 2014
    Assignees: Cornell Research Foundation, Inc., Myongji University Industry and Academia Cooperation Foundation
    Inventors: Ray J. Wu, Ajay K. Garg, Ju-Kon Kim, Baek-Hie Nahm, Yang-Do Choi, In-Cheol Jang, Won-Bin Choi, Yeon-Seak Kim, Chung-Ho Kim, Sang-Ik Song
  • Patent number: 8865969
    Abstract: According to the present invention, a technique of increasing the frequency of genetic recombination in genomic DNA of a plant is established. Such technique comprises: introducing a restriction enzyme gene that can be expressed in a target plant cell into the plant cell and causing the restriction enzyme gene to be transiently expressed so as to induce genetic recombination of genomic DNA; or introducing a promoter and a restriction enzyme gene using the Agrobacterium method so as to induce genetic recombination of genomic DNA.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: October 21, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Riken
    Inventors: Satoshi Kondo, Chikara Ohto, Kunihiro Ohta, Shuichi Ohsato, Norihiro Mitsukawa, Nobuhiko Muramoto, Hiroki Sugimoto
  • Patent number: 8865451
    Abstract: The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: October 21, 2014
    Assignees: Los Alamos National Security, LLC, University of Maine System Board of Trustees
    Inventors: Pat J. Unkefer, Penelope S. Anderson, Thomas J. Knight
  • Patent number: 8852885
    Abstract: Methods and compositions for the production of oil, fuels, oleochemicals, and other compounds in recombinant microorganisms are provided, including oil-bearing microorganisms and methods of low cost cultivation of such microorganisms. Microalgal cells containing exogenous genes encoding, for example, a lipase, a sucrose transporter, a sucrose invertase, a fructokinase, a polysaccharide-degrading enzyme, a keto acyl-ACP synthase enzyme, a fatty acyl-ACP thioesterase, a fatty acyl-CoA/aldehyde reductase, a fatty acyl-CoA reductase, a fatty aldehyde reductase, a fatty acid hydroxylase, a desaturase enzyme, a fatty aldehyde decarbonylase, and/or an acyl carrier protein are useful in manufacturing transportation fuels such as renewable diesel, biodiesel, and renewable jet fuel, as well as oleochemicals such as functional fluids, surfactants, soaps and lubricants.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Solazyme, Inc.
    Inventors: Scott Franklin, Aravind Somanchi, Janice Wee, George Rudenko, Jeffrey L. Moseley, Walt Rakitsky, Xinhua Zhao, Riyaz Bhat
  • Patent number: 8847014
    Abstract: Nucleotide sequences mediating male fertility in plants are described, with DNA molecule and amino acid sequences set forth. Promoter sequences and their essential regions are also identified. The nucleotide sequences are useful in mediating male fertility in plants.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: September 30, 2014
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventors: Marc Albertsen, Tim Fox, Gary Huffman, Mary Trimnell
  • Patent number: 8847010
    Abstract: The present invention relates to a genetically modified plant having an increased amount of oil in its green biomass as compared to the oil in the green biomass of its non-genetically modified counterpart. The plants may be used for producing bio-fuels such as biodiesel fuel.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 30, 2014
    Assignees: Biotechnology Foundation, Inc., Thomas Jefferson University
    Inventors: Hilary Koprowski, Vyacheslav Andrianov, Mykola Borsyuk
  • Patent number: 8847012
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Tomotsugu Koyama, Kyoko Matsui, Masaru Takagi
  • Patent number: 8847011
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Patent number: 8828690
    Abstract: Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding multizymes (i.e., single polypeptides having at least two independent and separable enzymatic activities) along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these multizymes in plants and oleaginous yeast are disclosed.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: September 9, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Howard G. Damude, Anthony J. Kinney, Kevin G. Ripp, Quinn Qun Zhu
  • Patent number: 8802924
    Abstract: An isolated protein which is at least partially encoded by a polynucleotide sequence encoding a novel elongase is provided together with a composition which includes the isolated protein. A transgenic plant or a transgenic seed transformed by a polynucleotide encoding a protein which is at least partially encoded by a novel elongase is also provided. The invention also includes a process for making a very long-chain polyunsaturated fatty acid in a transformed cell or plant expressing the isolated protein which is at least partially encoded by a polynucleotide sequence encoding a novel elongase.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 12, 2014
    Assignee: Ben Gurion University of the Negev Research and Development Authority
    Inventors: Zvi Hacohen, Inna Khozin Goldberg, Rivka Ofir, Iskandarov Umidjon
  • Patent number: 8802921
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 12, 2014
    Assignee: Dow AgroSciences, LLC.
    Inventors: William M. Ainley, Ryan C. Blue, Michael G. Murray, David Corbin, Rebecca R. Miles, Steven R. Webb
  • Patent number: 8802928
    Abstract: The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Yield Enhancing Protein (YEP). The YEP is selected from a Nucleosome Assembly Protein 1-like polypeptide (NAP1-like), a Like Sm polypeptide (Lsm protein), a truncated Cyclin H (CycHTr) polypeptide, a Remorin polypeptide, and a DREB protein. The present invention also concerns plants having modulated expression of a nucleic acid encoding such a YEP, which plants have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown YEP-encoding nucleic acids, and constructs comprising the same, useful in performing the methods of the invention.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 12, 2014
    Assignee: BASF Plant Science GmbH
    Inventors: Ana Isabel Sanz Molinero, Valerie Frankard, Yves Hatzfeld, Christophe Reuzeau
  • Patent number: 8785727
    Abstract: The present invention relates to a polynucleotide from Emiliana huxleyi which codes for a desaturase and which can be employed for the recombinant production of polyunsaturated fatty acids. The invention furthermore relates to vectors, host cells and transgenic nonhuman organisms which comprise the polynucleotide according to the invention, and to the polypeptides encoded by the polynucleotide. The invention furthermore relates to antibodies against the polypeptide according to the invention. Finally, the invention also relates to production methods for the polyunsaturated fatty acids and for oil, lipid and fatty acid compositions and to their use as drugs, cosmetics, foodstuffs, feedstuffs, preferably fish food, or food supplements.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 22, 2014
    Assignee: Rothamsted Research Ltd.
    Inventors: Joerg Bauer, Johnathan A. Napier, Olga Sayanova
  • Patent number: 8759610
    Abstract: The cloning and broad characterization of a lyso-phosphatidic acid acyltransferase (LPAT2) from Tropaeolum majus is described. The TmLPAT2 enables the production of plants, seeds and cells with enhanced oil and/or fatty acid content. In particular, recombinant TMLPAT2 increases levels of very long chain fatty acids (VLCFA), especially erucic acid, in plants, seeds and cells.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: June 24, 2014
    Assignee: National Research Council of Canada
    Inventors: David C. Taylor, Tammy Francis