Patents Examined by Matthew R Diaz
  • Patent number: 10269465
    Abstract: The sulfide of the present invention comprises an amorphous (lithium) niobium sulfide having an average composition represented by formula (1): Lik1NbSn1 (wherein 0?k1?5; 3?n1?10; and when n1?3.5, k1?0.5), or an amorphous (lithium) titanium niobium sulfide having an average composition represented by formula (2): Lik2Ti1-m2Nbm2Sn2 (wherein 0?k2?5; 0<m2<1; 2?n2?10; and when n2?3.5, k2?1.5). The sulfide of the present invention is a material that is useful as a cathode active material for lithium batteries, such as lithium primary batteries, lithium secondary batteries, and lithium ion secondary batteries, and has a high charge-discharge capacity, high electrical conductivity, and excellent charge-discharge performance.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 23, 2019
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi Sakuda, Tomonari Takeuchi, Noboru Taguchi, Hikari Sakaebe, Kuniaki Tatsumi
  • Patent number: 10240061
    Abstract: The present invention provides a conductive polymer composite including: (A) a ?-conjugated polymer, and (B) a dopant polymer which contains a repeating unit “a” shown by the following general formula (1) and has a weight-average molecular weight in the range of 1,000 to 500,000. There can be provided a conductive polymer composite that has excellent filterability and film-formability by spin coating, and also can form a conductive film having high transparency and flatness when the film is formed therefrom.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: March 26, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Takayuki Nagasawa
  • Patent number: 10224127
    Abstract: The resin composition according to the present invention contains a polyacetal resin having a specific molecular weight distribution, a specific carbon black, and an alkaline metal wherein the contents of the carbon black and the alkaline metal are in specific ranges. The molded article according to the present invention contains the resin composition.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 5, 2019
    Assignee: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Nozomi Inagaki, Takaaki Miyoshi, Junichi Tsuzuki
  • Patent number: 10170212
    Abstract: The invention relates to a novel solid state process for the preparation of metal-containing compounds comprising the steps i) forming a reaction mixture comprising one or more metal-containing precursor compounds and optionally one or more non-metal-containing reactants, and ii) using one or more hypophosphite-containing materials as a reducing agent; wherein one or more of the hypophosphite-containing materials is used as an agent to reduce one or more of the metal-containing precursor compounds; and further wherein the process is performed in the absence of an oxidizing atmosphere. Materials made by such a process are useful, for example, as electrode materials in alkali metal-ion battery applications.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: January 1, 2019
    Assignee: FARADION LIMITED
    Inventors: Jeremy Barker, Richard Heap
  • Patent number: 10141082
    Abstract: The present invention relates to oxidation resistant copper nanoparticles, and to a method for producing the same, which includes the steps of: preparing a first solution composed of a solvent, a polymer, and an organic acid; stirring the first solution to produce a first stirred solution; mixing the first stirred solution, a copper precursor, and a first reducing agent to produce a second reactant solution; mixing a second reducing agent with the second reactant solution to produce a third reactant solution; and collecting copper nanoparticles separated from the third reactant solution, which is a very simple process performing the reactions at a normal temperature under atmospheric conditions to produce copper nanoparticles, and an eco-friendly method firstly applying a watery solvent so as to achieve mass production of copper nanoparticles only by mixing solutions.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 27, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young-Jei Oh, Se-Hoon Kim
  • Patent number: 10083774
    Abstract: The present invention provides a quantum dot encapsulated by a siloxane including an alkyl group having 4 or more carbon atoms, a composition including the same, and a device to which the composition is applied, and when the encapsulated quantum dot is used, quantum yield and dispersion stability may be enhanced.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: September 25, 2018
    Assignee: LMS Co., Ltd.
    Inventors: Doo Hyo Kwon, Jeong Og Choi, Oh Kwan Kwon
  • Patent number: 10074454
    Abstract: The composition described herein for the prevention of corrosion comprises: sacrificial metal particles more noble than a metal substrate to which the composition contacts; carbonaceous material that can form electrical contact between the sacrificial metal particles; and means for providing an anticorrosion coating material for the metal substrate. The composition can form a coating on a metal substrate surface. A method for applying the composition for the prevention of corrosion is also described herein.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 11, 2018
    Assignee: Tesla NanoCoatings, Inc.
    Inventors: Jorma Antero Virtanen, Todd Hawkins
  • Patent number: 10074453
    Abstract: Polypyrrole/carbon (PPy/C) composite doped with organic anion p-toluenesulfonate (pTS) is utilized as an electrode in supercapacitor for energy storage application. The surface initiated in-situ chemical oxidative polymerization yields a composite material PPy/C in the presence of varying concentrations of pTS. The novelty of the present invention lies in the doping of PPy/C composite with organic anion pTS and consequent enhancement of its electrochemical activity and stability. The conjugation length and electrical conductivity of pTS doped PPy/C composites increase with the increase in dopant concentration. The pTS doped PPy/C composite synthesized using equimolar concentration (0.1 M) of pTS to pyrrole shows the maximum specific capacitance of ˜395 F/g in 0.5 M Na2SO4 aqueous solution with significant stability ˜95% capacitance retention after ˜500 cycles.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 11, 2018
    Assignee: Council of Scientific & Industrial Research
    Inventors: Amit Kumar, Hari Krishna Singh, Rajiv Kumar Singh, Ramadhar Singh, Pankaj Srivastava
  • Patent number: 10060038
    Abstract: An anti-corrosion composition containing at least one fatty acid ester, at least one glycol, at least one ethylene oxide/propylene oxide (EO/PO) alkoxylate, at least one polyethylene glycol ester, and at least one modified lecithin is provided. An anti-corrosion composition also is provided which contains at least one fatty acid ester, at least one glycol, at least one sorbate, and at least one modified lecithin. A method of preparing an anti-corrosion composition is also provided. At least one modified lecithin can be blended with at least one fatty acid ester, at least one glycol, at least one EO/PO alkoxylate, or at least one polyethylene glycol ester, or any combination thereof. A method of inhibiting corrosion of a metal surface including applying an anti-corrosion composition to the metal surface in an amount effective to inhibit corrosion of the metal surface is further provided.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 28, 2018
    Assignee: Buckman Laboratories International, Inc.
    Inventors: Amy E. Carter, Donald G. Jenkins, Daniel Glover, Carlton E. Hagen
  • Patent number: 10062472
    Abstract: A polyolefin molded product comprising a resin composition containing (1) from 1 to 30% by mass of an olefin-based polymer having an elastic modulus of from 5 to 450 MPa, (2) a propylene-based polymer having an elastic modulus of 500 MPa or more (the content of the component (2) is the balance), and (3) from 0.0001 to 2% by mass of an additive.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: August 28, 2018
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Nozomu Fujii, Masahiro Kubo
  • Patent number: 10037831
    Abstract: A nanowire device and a method of making a nanowire device are provided. The device includes a plurality of nanowires functionalized with different functionalizing compounds. The method includes functionalizing the nanowires with a functionalizing compound, dispersing the nanowires in a polar or semi-polar solvent, aligning the nanowires on a substrate such that longitudinal axes of the nanowires are oriented about perpendicular to a major surface of the substrate, and fixing the nanowires to the substrate.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: July 31, 2018
    Assignee: SOL VOLTAICS AB
    Inventors: Tommy Mikael Garting, Maria Huffman, Lars Göran Stefan Ulvenlund, Johan Eric Borgström, Umear Naseem
  • Patent number: 10026520
    Abstract: Provided is a cathode active material for a secondary battery, specifically, a cathode active material for a secondary battery including sodium transition metal pyrophosphate satisfying Na3.12?x2Acx1M1ay1M2by2 (P2O7)z, which has an advantage of structural stability due to a strong P—O bond of sodium transition metal phosphate having an olivine structure, and also performs proper intercalation and deintercalation of Na ions having a large ion radius, thereby significantly improving reversibility during charging and discharging, and a charge and discharge rate.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: July 17, 2018
    Assignees: SK Innovation Co., Ltd., UNIST (Ulsan National Institute of Science and Technology)
    Inventors: Jeong Soo Kim, Young Shol Kim, Je Hyun Chae, Hee Young Sun, Kyu Tae Lee, Seung Hee Woo, Kwang Ho Ha
  • Patent number: 10020089
    Abstract: The present invention provides a conductive polymer composite including (A) a ?-conjugated polymer and (B) a dopant polymer which contains a repeating unit “a” represented by the following general formula (1) and has a weight-average molecular weight in the range of 1,000 to 500,000, wherein R1 represents a hydrogen atom or a methyl group; R2 represents a fluorine atom or a trifluoromethyl group; Z represents a single bond or —C(?O)—O—; “m” is an integer of 1 to 4; and “a” is a number satisfying 0<a?1.0. There can be provided a conductive polymer composite that has excellent filterability and film-formability by spin coating, and also can form a conductive film having high transparency and flatness when the film is formed from the composite.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: July 10, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Koji Hasegawa, Takayuki Nagasawa
  • Patent number: 10014089
    Abstract: Liquid precursor compositions are provided, along with methods of preparing the liquid precursor compositions, and methods for forming layers using the liquid precursor composition, for example in vapor deposition processes such as CVD and ALD. In some embodiments, the liquid precursor compositions comprise a metal compound of the formula M(DAD)2, where M is Co or Ni and DAD is a diazadiene ligand.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 3, 2018
    Assignee: UP CHEMICAL CO., LTD.
    Inventors: Won Seok Han, Wonyong Koh
  • Patent number: 9997270
    Abstract: A lithium ion conductive substance is provided that is characterized by containing a compound wherein a composite oxide represented by Li1+x+yAlxTi2?xSiyP3?yO12 (0?x?1 and 0?y?1) is doped with at least one kind of element selected from Zr, Hf, Y, and Sm. Furthermore, a method for manufacturing the lithium ion conductive substance is provided that includes the following steps: (a) a step of forming an inorganic substance that contains predetermined quantities of a Li component, an Al component, a Ti component, a Si component, and a P component, into a sheet shape, and (b) a step of interposing between materials that contain at least one kind of element selected from Zr, Hf, Y, and Sm, and sintering, a sheet-shaped formed body obtained at step (a).
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 12, 2018
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Koichi Hamamoto, Yoshinobu Fujishiro, Danila Victorovich Matveev
  • Patent number: 9984784
    Abstract: The present invention relates to a glass frit, a conductive paste composition comprising the glass frit, and a solar cell fabricated using the conductive paste composition. The glass frit of the present invention comprises SiO2, PbO, and at least one selected from the group consisting of Al2O3, ZrO2, ZnO, and Li2O. Further, the conductive paste composition of the present invention comprises a silver (Ag) powder, a lithium titanium oxide, a glass frit, a binder, and a solvent. The conductive paste composition of the present invention can be used to provide a solar cell having low contact resistance to enhance photoelectric efficiency.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: May 29, 2018
    Assignee: HANWHA CHEMICAL CORPORATION
    Inventors: Won Il Son, You-Jin Sim, Choong-Hoon Paik, Mi-Kyoung Kim
  • Patent number: 9972413
    Abstract: The present invention is to provide a metal particle dispersion for electroconductive substrates, which has high dispersibility and dispersion stability and which is able to form a film that shows high electroconductivity after baking. Disclosed is a metal particle dispersion for electroconductive substrates, comprising metal particles, a dispersant and a solvent, wherein the dispersant is a graft copolymer having at least a constitutional unit represented by the following chemical formula (I) and a constitutional unit represented by the following chemical formula (II): (Symbols in the formulae are as described in the Description.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: May 15, 2018
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Yoshinobu Omori, Naonobu Yoshi, Michihiro Ogura, Tomoki Murata, Mikiko Hojo
  • Patent number: 9959949
    Abstract: A LiBH4—C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 1, 2018
    Assignee: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Ragaiy Zidan, Joseph A Teprovich, Jr., Hector R. Colon-Mercado, Scott D Greenway
  • Patent number: 9953739
    Abstract: The composition described herein for the prevention of corrosion comprises: sacrificial metal particles more noble than a metal substrate to which the composition contacts; carbonaceous material that can form electrical contact between the sacrificial metal particles; and means for providing an anticorrosion coating material for the metal substrate. The composition can form a coating on a metal substrate surface. A method for applying the composition for the prevention of corrosion is also described herein.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 24, 2018
    Assignee: Tesla Nanocoatings, Inc.
    Inventors: Jorma Antero Virtanen, Todd Hawkins
  • Patent number: 9953740
    Abstract: The present invention is to provide a dispersant which has excellent dispersibility and which is able to inhibit the oxidation of dispersed particles. Disclosed is a dispersant comprising a graft copolymer having a constitutional unit represented by the following general formula (I) and a constitutional unit represented by the following general formula (II): (Symbols shown in the general formulae (I) and (II) are as described in the Description.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: April 24, 2018
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Yoshinobu Omori, Naonobu Yoshi, Michihiro Ogura, Tomoki Murata, Mikiko Hojo