Patents Examined by Matthew T Largi
  • Patent number: 10858090
    Abstract: A composite assembly has an outer spar component having an outer spar component inner profile, an inner spar component having an inner spar component outer profile substantially complementary to the outer spar component inner profile, and an adhesive disposed between the outer spar component and the inner spar component.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: December 8, 2020
    Assignee: BELL TEXTRON INC.
    Inventors: Ronald J. Measom, Mitchell Elvin Rains
  • Patent number: 10837385
    Abstract: A method of raising exhaust gas temperatures of a two-cycle uniflow scavenged engine at lower loads. At lower loads, the exhaust valves are activated with a frequency that is less frequent than every engine cycle. This retains exhaust within the cylinder for one or more cycles, and when the exhaust valves are again activated, the exhaust temperature will be elevated. For engines having a means for controlling intake manifold pressure, such as a compressor having variable speed or a means for bleeding off compressor output, intake manifold pressure can be reduced at low loads, which also has the effect of elevating exhaust temperatures.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: November 17, 2020
    Assignee: Yelir, Inc.
    Inventors: Michael B. Riley, John C. Hedrick, Steven G. Fritz
  • Patent number: 10830117
    Abstract: An exhaust aftertreatment assembly and method of manufacturing and operating an exhaust aftertreatment assembly. An exhaust aftertreatment assembly includes an aftertreatment housing and an inlet conduit coupled to the aftertreatment housing at an inlet port so as to transfer exhaust gas into the aftertreatment housing. An inlet chamber is positioned in the aftertreatment housing. The inlet chamber is fluidly coupled to the inlet port of the aftertreatment housing to receive the exhaust gas from the inlet conduit.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: November 10, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Randolph G. Zoran, David M. Sarcona, Ryan M. Johnson, Enoch Nanduru
  • Patent number: 10830114
    Abstract: An object of the disclosure is to prevent the sensing accuracy of an exhaust gas sensor from being deteriorated by the effect of electromagnetic waves in an exhaust gas purification system for an internal combustion engine that is configured to apply electromagnetic waves to the exhaust gas purification device provided in an exhaust passage of the internal combustion engine. The disclosure is applied to an exhaust gas purification system for an internal combustion engine including an exhaust gas sensor located within the range of radiation of electromagnetic waves from a radiating device that radiates electromagnetic waves of a specific frequency to an exhaust gas purification device. The system suspends the radiation of electromagnetic waves from the radiating device during a sampling period in which sampling of the output value of the exhaust gas sensor is performed, even when a specific condition for performing the radiation is met.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 10, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenichi Kohashi, Hiroshi Otsuki, Kazuki Kikuchi, Shinji Ikeda
  • Patent number: 10823029
    Abstract: A skip fire control that relies on a combination of a torque request, exhaust temperature, and air-fuel ratio in determining firing density is described. Also, skipped firing opportunities may either pump or not pump air into an exhaust system, allowing an exhaust gas temperature in the exhaust system to be controlled or modulated. The present invention is also related to Dynamic Skip Fire (DSF), where a decision to either fire or skip cylinders is made every firing opportunity.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: November 3, 2020
    Assignee: Tula Technology, Inc.
    Inventors: Shikui Kevin Chen, Matthew A. Younkins
  • Patent number: 10815858
    Abstract: An exhaust system is provided that includes an exhaust aftertreatment unit, first and second exhaust pathway in communication with and upstream of the exhaust aftertreatment unit, a thermally activated flow control device operable in a first and second mode, and a thermal storage device. In the first mode, the flow control device permits exhaust to flow to the aftertreatment unit through the first pathway and inhibits flow through the second pathway. In the second mode, the flow control device permits exhaust flow to the aftertreatment unit through the second pathway and inhibits flow through the first pathway. The flow control device may switch between the first and second modes based on a change of temperature. The thermal storage device is within the second pathway, stores thermal mass, and provides thermal insulation to enable a catalyst of the aftertreatment unit to maintain a predetermined temperature for a predetermined time.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: October 27, 2020
    Assignee: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Mark D. Everly, Magdi Khair, Louis P. Steinhauser, George F. Jambor, Jacob Lindley
  • Patent number: 10808586
    Abstract: Rich spike is carried out in an efficient manner. In an exhaust gas purification apparatus for an internal combustion engine which performs lean burn operation, the apparatus includes an NOx storage reduction catalyst, a controller to carry out rich spike, to calculate a storage amount of NOx, to calculate a storage amount of nitrates, and calculate a nitrate ratio, wherein the controller controls a timing at which the rich spike is carried out, based on the nitrate ratio.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: October 20, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Kobayashi, Toshihiro Mori, Daichi Imai, Keiichiro Aoki
  • Patent number: 10808594
    Abstract: A system providing an approach for catalytic converter warmup mode is applicable to multiple vehicle applications including hybrid vehicles. The system determines exhaust enthalpy during conditions including transient engine speed and transient engine load for a catalytic converter receiving exhaust output from an engine. Multiple exhaust parameter measurement devices each measure exhaust conditions entering the catalytic converter. A processor receives output from each of the exhaust parameter measurement devices and continuously calculates an enthalpy of the catalytic converter. The calculated enthalpy of the catalytic converter is repeatedly compared to a predetermined enthalpy threshold required to achieve catalytic light-off saved in a memory.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: October 20, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel S. Dimoski, Brian P. Hannon, Jr., Vijay Ramappan
  • Patent number: 10801385
    Abstract: A system may include a NOx sensor and a controller. The controller may be configured to interpret a value of a first parameter indicative of an amount of NOx measured by the NOx sensor and interpret a value of a second parameter for a NOx value from a look-up table. The controller may be further configured to determine a correction factor based on the value of the first parameter and the value of the second parameter and generate a dosing command based, at least in part, on the determined correction factor. In some implementations, the NOx value from the look-up table may be based on one or more operating conditions of an engine. In some implementations, the controller may be further configured to update a NOx value of the look-up table based on the determined correction factor.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 13, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Chetan Ponnathpur, Sarang S. Sonawane
  • Patent number: 10801386
    Abstract: A system includes a first diesel engine operable to drive a first device, a first diesel exhaust fluid (“DEF”) tank associated with the first engine and operable to provide DEF to the first diesel engine during operation, a second diesel engine operable to drive a second device, a second DEF tank associated with the second engine and operable to provide DEF to the second diesel engine during operation, and an external DEF tank arranged to contain a quantity of DEF that is coupled to the first DEF tank and the second DEF tank and operable to selectively deliver DEF from the external DEF tank to each of the first DEF tank and the second DEF tank.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 13, 2020
    Assignee: CLARK EQUIPMENT COMPANY
    Inventors: Kyle Farmer, Chinmay Bhatt, Nicholas Harknett
  • Patent number: 10801381
    Abstract: Embodiments relate to an exhaust gas after-treatment device with an exhaust line having an inlet for discharging the exhaust gas and a thermal reactor, which is arranged in the exhaust line and has a first, thermal reaction zone for the exhaust gas flow, where a mixing device is provided for admixing a reducing agent to the exhaust gas flow in the exhaust line, which is arranged between the inlet and the thermal reactor and where the thermal reactor has at least one second reaction zone for a catalytic reaction in the exhaust gas flow with the involvement of the reducing agent.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: October 13, 2020
    Assignee: INNIO Jenbacher GmbH & Co OG
    Inventor: Friedhelm Hillen
  • Patent number: 10794307
    Abstract: An engine control system and method of controlling an engine system are provided. The engine control system includes at least one sensor module configured to generate an exhaust condition signal based on a determined condition in an exhaust component and a cylinder bank control module communicatively coupled to the at least one sensor module. The cylinder bank control module is configured to cause transmission of a first bank control signal to cause a first bank of cylinders of an engine to deactivate at least in part in response to a determination based on the exhaust condition signal that a hydrocarbon mass quantity is above a pre-determined hydrocarbon mass quantity threshold.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 6, 2020
    Assignee: Cummins Inc.
    Inventors: David Joseph Reynolds, David A. Brush
  • Patent number: 10794310
    Abstract: In some examples, a system including one or more processors may receive sensor data from one or more sensors indicating one or more engine parameters of an engine including a combustion chamber. Based on the sensor data, the system may determine a homogeneity index indicative of a homogeneity of an air-fuel mixture within the combustion chamber. Furthermore, the system may determine an estimated amount of NOx in the exhaust gas based at least in part on the homogeneity index. In addition, based at least partially on the estimated amount of NOx in the exhaust gas, the system may send an instruction to control an engine component.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 6, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Zicheng Ge, Yahodeep Lonari, Kazuhiro Oryoji
  • Patent number: 10794251
    Abstract: An engine has an injector communicating with a combustion chamber to introduce a plurality of dosing shots to mix with exhaust gases and regenerate an aftertreatment device downstream of the combustion chamber. An apportionment strategy can apportion a per cylinder quantity, representing the quantity of dosing fuel to introduce per cylinder per combustion cycle, among a predefined number of dosing shots each having a first per shot quantity. The strategy compares the predefined number of dosing shots with a temporal dosing window to determine if predefined number of dosing shots can be conducted within the temporal dosing window. If so, the strategy proceeds to introduce the predefined number of dosing shots and if not, the strategy may recalculate a reduced number of dosing shots and reapportions a second per shot quantity.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 6, 2020
    Assignee: Caterpillar Inc.
    Inventors: James S. Ulstad, Kranti K. Nellutla, Greg L. Armstrong, Steven Y. Tian, Brian P. Brennan, Sasidhar Rayasam, Anand KrishnamurthyGopalan
  • Patent number: 10794254
    Abstract: A urea injection control method in an exhaust after-treatment system includes: performing an ammonia slip prevention logic that adjusts a urea injection amount based on the highest temperature during a predetermined period of time from an end point of filter regeneration to a thermal equilibrium point when a temperature of a selective catalytic reduction (SCR) catalyst is higher than or equal to a predetermined threshold temperature at the end point of the filter regeneration; and adjusting a urea injection amount based on an ammonia storage amount map when the temperature of the SCR catalyst is lower than or equal to the predetermined threshold temperature at the end point of the filter regeneration. In particular, the thermal equilibrium point is a point at which a temperature of a filter is close or equal to an exhaust gas temperature.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 6, 2020
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Yoon Sung Choi
  • Patent number: 10787945
    Abstract: A dosing control unit (DCU) may receive operational information associated with a selective catalytic reduction (SCR) aftertreatment system. The DCU may generate a deposit prediction, associated with the SCR aftertreatment system, based on the operational information. The deposit prediction may include information that identifies a predicted size of a deposit in a dosing zone of a plurality of dosing zones associated with the SCR aftertreatment system. The deposit prediction may be generated using a deposit growth model associated with predicting sizes of deposits in the plurality of dosing zones. The DCU may select a dosing scheme, of a plurality of dosing schemes, based on the deposit prediction. The DCU may implement the selected dosing scheme in order to cause diesel exhaust fluid (DEF) to be dosed in the plurality of dosing zones in accordance with the selected dosing scheme.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Caterpillar Inc.
    Inventors: Dustin I. Landwehr, Jay Venkataraghavan
  • Patent number: 10787947
    Abstract: A fluid sensor protection assembly for protecting a fluid sensor comprises a housing receiving the fluid sensor. The housing includes a bottom wall having a lower inner flow-through opening, a top wall spaced apart from the bottom wall in a vertical direction and having an upper inner flow-through opening, a lower cover member covering the lower inner flow-through opening on an outside of the housing, and an upper cover member covering the upper inner flow-through opening on the outside of the housing. The lower cover member is spaced apart from the lower inner flow-through opening in the vertical direction and forms a lower outer flow-through opening. The upper cover member is spaced apart from the upper inner flow-through opening in the vertical direction and forms an upper outer flow-through opening. A continuous flow-through passage through the housing extends between the lower outer flow-through opening and the upper outer flow-through opening.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: September 29, 2020
    Assignee: MEAS France
    Inventors: Dariga Toulon-Meekhun, Vincent Leger, Gael Chavarria
  • Patent number: 10774793
    Abstract: Substances in external EGR gas are smoothly guided to a combustion chamber. An intake passage includes: a main intake passage including intake ports and communicating with a combustion chamber and having a supercharger interposed in the main intake passage; and a bypass passage branching off from the main intake passage upstream of the supercharger, and connected downstream of the supercharger; a flow rage adjustment valve changing a cross-sectional flow area of the bypass passage. The bypass passage is provided above the main intake passage, and includes an upper passage to which an EGR passage is connected.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 15, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Hidesaku Ebesu, Kouichi Shimizu, Ryotaro Nishida
  • Patent number: 10767513
    Abstract: A thermal electric power generator includes an evaporator, an expander, an electric generator, a condenser, and a pump. A working fluid used in the thermal electric power generator is an organic working fluid. The evaporator includes a heat exchanger, a bypass channel, and a flow rate adjustment mechanism. The bypass channel allows a heat medium to bypass the heat exchanger. The flow rate adjustment mechanism adjusts a flow rate of the heat medium to be supplied to the heat exchanger and a flow rate of the heat medium to be supplied to the bypass channel.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: September 8, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Subaru Matsumoto, Osao Kido, Atsuo Okaichi, Takumi Hikichi, Osamu Kosuda, Noriyoshi Nishiyama
  • Patent number: 10767542
    Abstract: To provide an exhaust gas analysis system that can accurately analyze exhaust gas discharged from an engine of a hybrid vehicle and can also be applied to a test that continues sampling into a sampling bag over a predetermined sampling time, a sampling apparatus is adapted to include a main flow path through which the exhaust gas flows, a sampling flow path that is connected to the main flow path to sample the exhaust gas into a sampling bag, and a constant flow rate mechanism that is provided in the main flow path and configured to be able to change a main flow rate that is an exhaust gas flow rate through the main flow path. Additionally, a control device is adapted to control the constant flow rate mechanism to change the main flow rate and change a sampling flow rate that is an exhaust gas flow rate through the sampling flow path.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: September 8, 2020
    Assignee: HORIBA, LTD.
    Inventor: Kazuya Tsurumi