Patents Examined by Matthew Warren
  • Patent number: 6822309
    Abstract: Adjacent ones of a plurality of fuse electrodes extending parallel to each other are cut off by a laser beam. Cutting positions on the adjacent fuse electrodes are set to positions which are different from each other in a direction in which the fuse electrodes extend. Since the cutting positions on the adjacent fuse electrodes are different from each other, the adjacent fuse electrodes are prevented from being short-circuited by fragments of components thereof that are scattered when the laser beam is applied to cut off the fuse electrodes.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: November 23, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Tomoki Hirota
  • Patent number: 6147378
    Abstract: A fully recessed device structure and method for low power applications comprises a trenched floating gate, a trenched control gate and a single wrap around buried drain region. The trenched floating gate and the trenched control gate are formed in a single trench etched into a well junction region in a semiconductor substrate to provide a substantially planar topography. The fully recessed structure further comprises a buried source region, and a buried drain region that are each formed in the well junction region laterally separated by the trench. The upper boundaries of the buried source region and the buried drain region are of approximately the same depth as the top surface of the trenched floating gate.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: November 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Yowjuang W. Liu, Donald L. Wollesen
  • Patent number: 6144091
    Abstract: A semiconductor device comprising a plurality of bump electrodes wherein signal pins requiring electrical connection are assigned in sequence from the bump electrodes at the outermost periphery near the edge of the semiconductor device to the bump electrodes in an interior area of the semiconductor device, and no-connection pins requiring no electrical connection are assigned to the remaining bump electrodes, is provided. Circuit board cost is thus reduced, and the ease of mounting the semiconductor device to the circuit board is improved.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: November 7, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tetsuro Washida
  • Patent number: 6140706
    Abstract: HSQ is employed as a dielectric layer in manufacturing a high density, multi-metal layer semiconductor device. The degradation of deposited HSQ layers during formation of the semiconductor device, as from photoresist stripping using an O.sub.2 -containing plasma, is avoided by forming first and second dielectric layers on the HSQ layer, forming a photoresist mask on the second dielectric layer and etching to form an opening in the second dielectric layer leaving the first dielectric layer exposed. The first dielectric layer protects the HSQ from degradation during subsequent stripping.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: October 31, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fei Wang, Simon S. Chan, Susan Chen
  • Patent number: 6114719
    Abstract: A magnetic tunnel junction (MTJ) memory cell uses a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the free ferromagnetic layer in the MTJ stack to provide transverse and/or longitudinal bias fields to the free ferromagnetic layer. The MTJ is formed on an electrical lead on a substrate and is made up of a stack of layers.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: September 5, 2000
    Assignee: International Business Machines Corporation
    Inventors: Frederick Hayes Dill, Robert Edward Fontana, Jr., Tsann Linn, Stuart Stephen Papworth Parkin, Ching Hwa Tsang
  • Patent number: 6111314
    Abstract: The present invention relates generally to a new method for improving the reliability of cooling designs using thermal paste to cool chips in semiconductor modules and structure thereof. More particularly, the invention encompasses a structure and a method that uses surface chemistry modification of the inside of the thermal cooling caps where it contacts thermal paste. The internal surface of the cap is modified by embedding particles that have the same chemical composition as one or more of the solids used in the thermal paste. The particles may be embedded in the cap by casting, grit blasting, or pressing the particles permanently into the surface.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: August 29, 2000
    Assignee: International Business Machines Corporation
    Inventors: David L. Edwards, Patrick A. Coico, Sushumna Iruvanti, Frank L. Pompeo, Raed A. Sherif, Hilton T. Toy
  • Patent number: 6100561
    Abstract: A method of forming an integrated circuit device, and in particular a CMOS integrated circuit device, having an improved lightly doped drain region. The methods include the steps of providing a semiconductor substrate with a P type well region and an N type well region. Gate electrodes are formed overlying gate dielectric over each P type well and N type well regions. The present LDD fabrication methods then provide a relatively consistent and easy method to fabricate CMOS LDD regions with N type and P type implants at a combination of different dosages and angles using first and second sidewall spacers, with less masking steps and improved device performance.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: August 8, 2000
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chih-Hsien Wang, Min-Liang Chen
  • Patent number: 6084267
    Abstract: A semiconductor integrated circuit comprises a substrate including a plurality of transistors, and a conductive line for coupling at least two of the transistors with each other, each transistor comprising a drain diffusion region, a source diffusion region, a gate region, and a test diffusion region within the substrate, the test diffusion region being electrically coupled to a metal line within the semiconductor integrated circuit for establishing an indication of the voltage at the probing diffusion region.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: July 4, 2000
    Assignee: STMicroelectronics, Inc.
    Inventor: Gianluca Petrosino
  • Patent number: 6084280
    Abstract: A transistor having a source/drain metal silicide in close proximity to the channel region may be formed according to the following process. A masking structure is formed upon a semiconductor substrate, and a metal is deposited self-aligned to sidewall surfaces of the masking structure. The metal is then annealed to form a metal silicide. Following formation of lightly doped drain impurity areas self-aligned to the sidewall surfaces of the masking structure, spacers may be formed adjacent the sidewall surfaces and source and drain impurity areas may be formed self-aligned to sidewall surfaces of the spacers. Fill structures are then formed adjacent the spacers and the masking structure is removed to form an opening between the spacers. A gate dielectric is formed upon the exposed upper surface of the semiconductor substrate within the opening, and a gate conductor is formed within the opening.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: July 4, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, Frederick N. Hause, Charles E. May
  • Patent number: 6081007
    Abstract: A gate insulating film and gate electrodes are formed on a substrate containing N-type impurities such as P or As. Under the gate insulating film is a gate region on both sides of which are a first and a second source drain region. The gate region is furnished in its central part with a high-concentration channel injection region containing N-type impurities at a concentration higher than that of the substrate. Between the high-concentration channel injection region on the one hand and the first and the second source drain region and on the other hand, there are formed a first and a second low-concentration channel injection region and having substantially the same impurity concentration as that of the substrate.
    Type: Grant
    Filed: January 7, 1999
    Date of Patent: June 27, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Takeru Matsuoka
  • Patent number: 6078085
    Abstract: A semiconductor integrated circuit is made up of a plurality of input-output circuit portions which are aligned at irregular intervals between a core portion and an external portion, a first guard-ring which is formed in the respective input-output circuit portions, and a second guard-ring which is formed between the respective input-output circuit portions. Accordingly, the semiconductor integrated circuit can prevent latch-up between the respective input-output circuit portions without changing the layout of the respective input-output circuit portions.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: June 20, 2000
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hajime Suzuki
  • Patent number: 6078088
    Abstract: Multi-level semiconductor devices are formed with reduced parasitic capacitance without sacrificing structural integrity or electromigation performance by removing the inter-layer dielectrics and supporting the interconnection system with a rigid lining. Embodiments include depositing a dielectric sealing layer, e.g., silicon oxide, silicon nitride or composite of silicon oxide/silicon nitride, before forming the first metallization level, removing the inter-layer dielectrics after forming the last metallization level, lining the interconnection system with undoped polycrystalline silicon and forming a dielectric protective layer, e.g. a silane derived oxide, on the uppermost metallization level.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: June 20, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Matthew S. Buynoski
  • Patent number: 6075264
    Abstract: A method of fabricating A ferroelectric memory cell composed of an MOS transistor and A ferroelectric capacitor formed over A semiconductor substrate, comprises the steps of forming A contact hole through an insulating layer to form A contact plug to electrically connect the source region of the MOS transistor and the lower electrode of the ferroelectric capacitor, depositing over the contact hole an oxidizable substance layer to combine with the oxygen generated while forming the ferroelectric layer of the ferroelectric capacitor before forming the contact plug in the contact hole, depositing A conductive oxygen compound layer to separate and pass the oxygen to the upper part of the oxidizable substance layer, and forming the contact plug to electrically connect the source region of the MOS transistor and the lower electrode of the ferroelectric capacitor.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: June 13, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Bon-Jae Koo
  • Patent number: 6066876
    Abstract: An integrated circuit arrangement contains an MOS transistor surrounded by an insulation structure, the source and drain thereof being arranged laterally and in different depths. A channel thereof proceeds essentially perpendicular to the surface of the circuit arrangement. Since the channel length is determined by etching or by growing a layer, channel lengths as short as less than 50 nm can be realized. For the manufacture, most of the masks of the traditional circuit arrangements in which planar transistors are integrated are employed, this significantly facilitating incorporation into the semiconductor manufacture.
    Type: Grant
    Filed: April 23, 1998
    Date of Patent: May 23, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Lothar Risch, Wolfgang Roesner, Thomas Aeugle, Wolfgang Krautschneider
  • Patent number: 6064097
    Abstract: A semiconductor integrated circuit device has macrocells composed of CMOS transistors. In a first wiring layer of the macrocells, a power source line coupled to the sources of P-channel MOS transistors and a ground line coupled to the sources of N-channel MOS tranistors are formed so as to extend in a first direction. In a second wiring layer of the macrocells, a power supply line connected to the power source line, a ground voltage supply line connected to the ground line, a first bias line for feeding a bias to the N well for the P-channel MOS transistors, and a second bias line for feeding a bias to a semiconductor substrate are formed recurrently so as to extend-in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: May 16, 2000
    Assignee: Rohm Co., Ltd.
    Inventor: Noriaki Hiraga
  • Patent number: 6057577
    Abstract: The present invention relate to a device of protection against voltage gradients of a monolithic component including a vertical MOS power transistor and logic circuits. The protection circuit has an N-type substrate corresponding to the drain of the MOS transistor, and logic components being realized in at least one P-type well formed in the upper surface of the substrate. Each of the N-type regions connected to the ground of the logic circuit, or to a node of low impedance with respect to the ground, is in series with a resistor.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: May 2, 2000
    Assignee: STMicroelectronics S.A.
    Inventors: Jean Barret, Antoine Pavlin, Pietro Fichera
  • Patent number: 6057576
    Abstract: A technique for fabricating an integrated circuit device 100 using an inverse-T tungsten gate structure 121 overlying a silicided layer 119 is provided. This technique uses steps of forming a high quality gate oxide layer 115 overlying a semiconductor substrate 111. The silicided layer 119 is defined overlying the gate oxide layer 115. The silicided layer 119 does not substantially react to this layer. The technique defines the inverse-T tungsten gate electrode layer 121 overlying the silicided layer 119. A top surface of this gate electrode may also be silicided 127 to further reduce the resistance of this device element.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: May 2, 2000
    Assignee: Mosel Vitelic, Inc.
    Inventors: Liang-Choo Hsia, Thomas Tong-Long Chang
  • Patent number: 6057582
    Abstract: Semiconductor device and method for fabricating the same, is disclosed, in which a gate insulating film is formed thicker at portions opposite to edge portions of a gate electrode for preventing the hot carrier possible to occur due to a strong electric field of the gate electrode, that can improve a device reliability, the device including a semiconductor substrate, a gate insulating film formed on the semiconductor substrate, the gate insulating film having both end portions formed thicker than a center portion, a gate electrode formed on the gate insulating film, the gate electrode having a center portion formed thicker than portions thereof on both sides of the gate insulating film, and impurity regions formed in surfaces of the semiconductor substrate on both sides of the gate electrode, and the method including the steps of (1) forming a gate insulating film on a semiconductor substrate, and forming a gate electrode having a thicker center portion on the gate insulating film, (2) expanding thicknesses o
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: May 2, 2000
    Assignee: LG Semicon Co., Ltd.
    Inventor: Ki Soo Choi
  • Patent number: 6054742
    Abstract: A pair of thin film transistors formed in adjacent layers of polysilicon. The gate of the first TFT and the source, drain and channel regions of the second TFT are formed in the first polysilicon layer. The source, drain and channel regions of the first TFT and the gate of the second TFT are formed in the second polysilicon layer. A dielectric layer is interposed between the first and second polysilicon layers. The first TFT gate overlaps the second TFT drain region in the first polysilicon layer and the second TFT gate overlaps the first TFT drain region in the second polysilicon layer. In another aspect of the invention, two TFTs are incorporated into a SRAM memory cell.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: April 25, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzalez
  • Patent number: 6051885
    Abstract: A highly integrated semiconductor device is made using a high precision manufacturing process having a comparatively small number of process steps. The device is substantially free of misalignment between structures formed with respect to openings formed in the middle of layers. An interlayer insulating film with an opening is formed on a first conductor, and a second conductor is deposited on the resultant structure. Part of the second conductor enters the opening, thereby producing a depression in the second conductor, which has a sharp-angled bottom situated at the horizontal center of the opening. A film made of, for example, a nitride is deposited on the second conductor to fill the depression. Thereafter, this film is removed such that part of it remains in the depression. Using the remaining film as a mask, the second conductor is removed to the same level as the interlayer insulting film.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: April 18, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Seiko Yoshida