Patents Examined by Maytee Marie Contes De Jesus
  • Patent number: 11883436
    Abstract: Disclosed are methods of preparing hematopoietic stem cells and progenitor cells (HSPCs) for transplant into a subject and to methods of using the treated cells. More particularly, methods of the invention comprise treating HSPCs ex vivo with an effective amount of a GABBR1 agonist and administering the treated HSPCs to the subject.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 30, 2024
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Owen James Tamplin, Kostandin Pajcini
  • Patent number: 11866734
    Abstract: The preset invention relates to a novel super-enhancer-bound Ash2l/OSN complex that can drive enhance activation, govern pluripotency network and sternness circuitry, and a reprogramming system or method through the regulation of this super-enhancer, Ash2l, to modulate pluripotency and cell fates. Ash2l directly binds to super-enhancers of several stemness genes to regulate pluripotency and self-renewal in pluripotent stem cells. Ash2l recruits Oct4/Sox2/Nanog (OSN) to form Ash2l/OSN complex at the super-enhancers of Jarid2, Nanog, Sox2, and Oct4, and further drives enhancer activation, upregulation of stemness genes, and maintains the pluripotent circuitry. Ash2l knockdown abrogates the OSN recruitment to all super-enhancers and further hinders the enhancer activation.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: January 9, 2024
    Assignee: TAIPEI VETERANS GENERAL HOSPITAL
    Inventors: Shih-Hwa Chiou, Ping-Hsing Tsai, Yueh Chien
  • Patent number: 11826490
    Abstract: Described are devices and associated methods of producing extracellular matrix (ECM) sheet devices with strengthened mechanical properties due to the selective retention of muscle tissue layers during processing.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 28, 2023
    Assignee: ACell, Inc.
    Inventors: Nathaniel Remlinger, Luai Huleihel, Jiayu Tang
  • Patent number: 11781109
    Abstract: The present invention relates to the field of in vitro 3D modeling of neural tissues, particularly of the brain. There is the need of developing cell culture models of neural tissue that reflect physiological aspects of neural tissue. The present invention provides methods of producing bioengineered neuronal organoids (BENOs) which form functional neuronal networks. The present invention also relates to uses and applications of the produced BENOs, e.g., in the fields of drug screening and personalized medicine.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: October 10, 2023
    Assignee: GEORGE-AUGUST-UNIVERSITAET GOETTINGEN STIFTUNG OEFFENLICHEN RECHTS, UNIVERSITAETSMEDIZIN
    Inventors: Wolfram-Hubertus Zimmermann, Maria Zafeiriou
  • Patent number: 11753621
    Abstract: The invention discloses a method for constructing functional exosomes capable of efficiently loading specific miRNA. In order to enable the exosome to carry miRNA with specific regulation function more efficiently so as to play a role in targeted regulation more accurately and efficiently, MS2 phage capsid protein is utilized to edit and construct a capture element of a specific miRNA molecule, and placenta mesenchymal stem cells are reprogrammed to enable the secreted exosome to efficiently load a target miRNA molecule, so that the target miRNA molecule is delivered to tissue cells to play a role in effective regulation, and therefore a new strategy is provided for realizing specific precise treatment in the future.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: September 12, 2023
    Assignee: CHINESE PLA GENERAL HOSPITAL
    Inventors: Qiankun Li, Wenzhi Hu, Cuiping Zhang, Xiaobing Fu
  • Patent number: 11649431
    Abstract: Provided are cortical interneurons and other neuronal cells and in vitro methods for producing such cortical interneurons and other neuronal cells by the directed differentiation of stem cells and neuronal progenitor cells. The present disclosure relates to novel methods of in vitro differentiation of stem cells and neural progenitor cells to produce several type neuronal cells and their precursor cells, including cortical interneurons, hypothalamic neurons and pre-optic cholinergic neurons. The present disclose describes the derivation of these cells via inhibiting SMAD and Wnt signaling pathways and activating SHH signaling pathway. The present disclosure relates to the novel discovery that the timing and duration of SHH activation can be harnessed to direct controlled differentiation of neural progenitor cells into either cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: May 16, 2023
    Assignees: MEMORIAL SLOAN-KETTERING CANCER CENTER, CORNELL UNIVERSITY
    Inventors: Lorenz Studer, Asif M. Maroof, Stewart Anderson
  • Patent number: 11612149
    Abstract: The present invention provides genetically modified non-human animals which are deficient in at least one or more types of CD3 genes selected from the group consisting of endogenous CD3?, CD3?, and CD3? in its genome and functionally express at least one or more types of human CD3 genes selected from the group consisting of human CD3?, CD3?, and CD3?. In the genetically modified non-human animals of the present invention, mature T cell differentiation and production can take place, and immunocompetent cells including T cells can exert their functions. The genetically modified non-human animals of the present invention enable efficient evaluation and screening in the development of therapeutic agents and therapeutic methods that use human CD3-mediated targeted drugs.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: March 28, 2023
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Koichi Jishage, Otoya Ueda, Naoko Wada, Takahiro Ishiguro, Yasuko Kinoshita