Patents Examined by Md M Rahman
  • Patent number: 11530948
    Abstract: A Raman sensor includes a light source assembly having a plurality of light sources configured to emit light to a plurality of skin points of skin, each of the plurality of skin points having a predetermined separation distance from a light collection region of the skin from which Raman scattered light is collected; a light collector configured to collect the Raman scattered light from the light collection region of the skin; and a detector configured to detect the collected Raman scattered light.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: December 20, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho Jun Chang, Sung Hyun Nam, Alexey Anikanov, Yun S Park, Eui Seok Shin, Woochang Lee
  • Patent number: 11525787
    Abstract: The invention is a flexible and configurable inspection system for the inspection of container units that combines and integrates a holding assembly for multiple containers integrating servo-controlled rotation of the units, transport and positioning of the containers that simulate human handling, and camera stations employing automated vision inspection. The system performs horizontal inspection for particulate and any other container defect that promotes particulate to better locate within the inspection area of the cameras. Inspection sequences and product recipes combine the typical manual inspection agitation with automated inspection rotational techniques to optimize detection. The system allows for semi-automatic operation with the operator at the front of the station feeding and out-feeding material manually or fully automated with conveyance system feeding and out-feeding material from the back of the station.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: December 13, 2022
    Inventor: Manuel Soto
  • Patent number: 11513005
    Abstract: A device for measuring optical spectra at high speed and with high resolution using tunable optical laser comb sources. In one embodiment there is provided a first tunable comb laser source and a second tunable comb laser source whereby the wavelength of each comb laser source is chosen such that the combination of the two sources provides a continuous spectral coverage over a band in an optical spectrum under a selected wavelength tuning condition. By overlapping the two comb sources in the manner described the deadzone issue is overcome in the most spectrally efficient way possible.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 29, 2022
    Inventors: Frank Smyth, Jules Braddell
  • Patent number: 11513061
    Abstract: A device for monitoring at least one parameter of a fluid specimen obtained from a patient. The device has a fluid conduit holder comprising a clamp configured to position a fluid conduit, which holds the fluid specimen obtained from the patient, in a position for optical analysis, and an optical analyzer having a light source and a light detector. The optical analyzer is configured to expose the fluid specimen contained within the fluid conduit to an illuminant and measure light received at the detector. The device has an optical alignment mechanism mechanically coupling the light source, the clamp, and the light detector together, and configured to align at least the light detector with the fluid conduit at the position for optical analysis.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: November 29, 2022
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Michael T. McCurdy, Rajagopal Srinivasan
  • Patent number: 11513267
    Abstract: A method for optical sensing includes providing a mirror comprising a central reflective region surrounded by a peripheral glare-suppressing region. A beam of light from a laser light source is directed to reflect from the central region so as to pass through an output optic along an axis toward a target scene. The light returned from the target scene through the output optic is focused onto an optical sensor, via collection optics having a collection aperture surrounding the mirror.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 29, 2022
    Assignee: APPLE INC.
    Inventors: Ariel Lipson, Itai Afek, Jonathan Hauser, Roei Remez, Moshe Kriman, Zafrir Mor
  • Patent number: 11506601
    Abstract: There is provided a resonant cavity system. A first mirror is actuated at a first end of a resonant cavity to move in a direction between a first position relative to a second mirror at a second end of the resonant cavity, at which a cavity length between the first mirror and the second mirror is less than a resonance length for a laser beam, and a second position relative to the second mirror, at which the cavity length is greater than the resonance length. An event is triggered when the cavity length is proximal to the resonance length. The first mirror is continuously actuated to move in the direction between the first position and the second position during the event.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 22, 2022
    Assignee: PICOMOLE INC.
    Inventors: Christopher Quentin Purves, Perry F. Kain, Denis Dufour
  • Patent number: 11499893
    Abstract: Disclosed are a method and a device for transferring a nanoparticle monolayer by using a capillary tube, wherein a nanoparticle monolayer present in a liquid-gas interface is locally and selectively separated and then transferred to a substrate by using a capillary tube. Accordingly, nondestructive and reproducible transfer can be made regardless of the surficial properties and structures of the substrate to which the monolayer is to be transferred. Therefore, the method and the device enable an in-situ high-speed inspection of harmful materials, such as an illegal drug and a residual pesticide, on surfaces of various solids such as fiber clothes, food and banknotes, and can be easily coupled to a microfluid channel having a small size and a complicated structure. Further, the method and the device can transfer a nanoparticle monolayer in a simple and inexpensive process without using special and expensive equipment.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: November 15, 2022
    Assignee: SOGANG UNIVERSITY RESEARCH FOUNDATION
    Inventors: Taewook Kang, Jeehan Chang, Jaekyeong Lee
  • Patent number: 11499910
    Abstract: Methods and apparatus for obtaining a vibrational circular dichroism (VCD) image using a discrete frequency infrared (DFIR) microscope are disclosed. The method includes generating a pulsed laser beam comprising a spectral frequency, which may be tunable; modulating the laser beam to generate circularly polarized light; illuminating a sample and collecting, and detecting an optical signal transmitted or transflected from the location of the sample. The detected signal is demodulated at, for example, both the pulse frequency and the sum or difference of the pulse frequency and the modulating frequency to obtain an intensity value that correspond to the absorbance, and a polarization-dependent value that corresponds to the VCD. Other configurations of the apparatus may be employed to measure VCB and VLD.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: November 15, 2022
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Yamuna Phal, Kevin Lee Yeh, Rohit Bhargava
  • Patent number: 11493430
    Abstract: Provided are an automatic analyzer and an optical measurement method for correcting a variation in the multiplication factor of a photoelectric element with high accuracy. The automatic analyzer comprises: a photoelectric element which generates electrons by light and outputs a current signal; a voltage application unit which applies a voltage to the photoelectric element; and a processing unit which corrects a variation in the multiplication factor of the photoelectric element, wherein the photoelectric element outputs a pulse signal as the current signal, and the processing unit corrects the variation in the multiplication factor on the basis of the pulse area of the pulse signal.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: November 8, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kosuke Suzuki, Fujio Onishi, Hidetsugu Tanoue
  • Patent number: 11493385
    Abstract: Embodiments of the present invention are directed to lightweight, portable spectrograph systems configured for applications in high-throughput crop phenotyping and plant health assessment, and associated methods.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 8, 2022
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Stephen Scott Eikenberry, Md. Ali Babar
  • Patent number: 11486970
    Abstract: Embodiments discussed herein refer to generating multiple laser beams from a single beam source. Single source multi-beam splitters can produce multiple beams from a single source, precisely control the exit angle of each beam, and ensure that each beam has substantially the same intensity.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 1, 2022
    Assignee: Innovusion, Inc.
    Inventors: Edouard Schmidtlin, Rui Zhang
  • Patent number: 11486986
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit a first optical beam having a first frequency and a second optical beam having a second frequency and a dispersive element to deflect the first optical beam having the first frequency at a first angle and the second optical beam having the second frequency at a second angle.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 1, 2022
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Omer P. Kocaoglu, Oguzhan Avci, Neal N. Oza, Keith Gagne, Behsan Behzadi
  • Patent number: 11486870
    Abstract: The present invention relates to a method for spectroscopical in-ovo gender determination of fertilized and incubated bird eggs comprising the steps of: a. providing a number of passages in an egg shell of an egg for allowing entrance into an interior of the egg and/or exit from the interior of the egg of electromagnetic waves suitable for spectroscopy, b. introducing electromagnetic waves into the interior of the egg c. detecting electromagnetic waves exiting the egg; d. analysing, by spectroscopy, of the exiting electromagnetic waves at at least one passage of the number of passages; and e. determining the gender of a chicken embryo.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: November 1, 2022
    Assignee: SELEGGT GmbH
    Inventor: Tjitze Meter
  • Patent number: 11484891
    Abstract: A fluid separation device includes a centrifuge in which a fluid is separated into at least two components, with an interface therebetween. At least a portion of one of the separated fluid components is removed from the centrifuge and flows through a vessel. Light is reflected off of the separated fluid component in the vessel and received and analyzed to determine its main wavelength. If the main wavelength is higher than a maximum value, a target location of the interface is changed. If the main wavelength is less than the maximum value, then the location of the interface is compared to the target location. When the interface is sufficiently close to the target location, the optical density of the separated fluid component in the vessel is compared to a minimum value. If the optical density is less than the minimum value, the target location of the interface is changed.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: November 1, 2022
    Assignee: Fenwal, Inc.
    Inventors: Benjamin E. Kusters, Richard I. Brown, Kyungyoon Min
  • Patent number: 11480467
    Abstract: Wearable spectroscopy systems and methods for identifying one or more characteristics of a target object are described. Spectroscopy systems may include a light source configured to emit light in an irradiated field of view and an electromagnetic radiation detector configured to receive reflected light from a target object irradiated by the light source. One or more processors of the systems may identify a characteristic of the target object based on a determined level of light absorption by the target object. Some systems and methods may include one or more corrections for scattered and/or ambient light such as applying an ambient light correction, passing the reflected light through an anti-scatter grid, or using a time-dependent variation in the emitted light.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 25, 2022
    Assignee: MAGIC LEAP, INC.
    Inventors: Adrian Kaehler, Christopher M. Harrises, Eric Baerenrodt, Mark Baerenrodt, Nastasja U. Robaina, Nicole Elizabeth Samec, Tammy Sherri Powers, Ivan Li Chuen Yeoh, Adam Carl Wright
  • Patent number: 11480530
    Abstract: Apparatus and associated methods relate to a system for detecting foreign object debris ingested into an aircraft engine. The system detects such foreign object debris by projecting a beam of light over an inlet of the aircraft engine. When foreign object debris is ingested into the aircraft engine, it intercepts the beam of light and scatters a back-scattered portion of the intercepted beam of light. An optical detector is configured to detect the back-scattered portion of the intercepted beam of light. A processor is configured to determine whether foreign object debris is ingested by the aircraft engine based on a comparison of a threshold value with a signal indicative of the back-scattered portion generated by the optical detector.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: October 25, 2022
    Assignee: Rosemount Aerospace Inc.
    Inventors: Mark Ray, Darren G. Jackson
  • Patent number: 11474029
    Abstract: A spectrophotometer includes: an infrared light source; an interferometer; a first detector; and a monitor unit. The monitor unit includes: a second detector; and a light amount control unit. The light amount control unit is operable to control the infrared light source such that the amount comes closer to a target light amount, based on the signal. The infrared light source emits light having a first wavelength range and light having a second wavelength range different from the first wavelength range. The second detector includes: a first light detection element; and a second light detection element. The first light detection element outputs to the light amount control unit a first voltage corresponding to the light having the first wavelength range. The second light detection element outputs to the light amount control unit a second voltage corresponding to the light having the second wavelength range.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: October 18, 2022
    Assignee: Shimadzu Corporation
    Inventor: Masataka Migita
  • Patent number: 11474028
    Abstract: A substrate inspection system is provided to monitor characteristics of a substrate, while the substrate is disposed within (or being transferred into/out of) a processing unit of a liquid dispense substrate processing system. The inspection system is integrated within a liquid dispense substrate processing system and includes one or more optical sensors of a reflectometer (such as a spectrometer or laser-based transceiver) configured to obtain spectral data from a substrate. A controller is coupled to receive the spectral data from the optical sensors(s). The one or more optical sensors (or one or more optical fibers coupled to the rest of the optical sensor hardware) are coupled at locations within the substrate processing system. The controller analyzes the spectral data received from the optical sensors(s) to detect characteristic(s) of the substrate including, but not limited to, film thickness (FT), refractive index changes, and associated critical dimension (CD) changes.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 18, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Michael Carcasi, Mark Somervell, Joshua Hooge, Masahide Tadokoro
  • Patent number: 11471843
    Abstract: A stirring bar capable of reducing a dead space inside a container and efficiently using a contained liquid. A stirring bar introduced into a reagent bottle having an opening mouth portion and rotated by a magnetic force transmitted from the outside of the reagent bottle so as to stir a reagent in the reagent bottle, including: a magnet having a predetermined shape; and a main body including a magnetic member therein, in which the main body is provided with a through-hole which has an opening area corresponding to an opened area and is able to receive a nozzle in the opening area, and in which the stirring bar in a rotation state is able to receive the nozzle in a circular center area narrower than the opening area and having a diameter of an opening width of a center portion of the opening area.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 18, 2022
    Assignee: SEKISUI MEDICAL CO., LTD.
    Inventor: Toshiki Kawabe
  • Patent number: 11474038
    Abstract: The purpose of the present invention is to newly provide a method with which it is possible to appropriately evaluate the protective effect of an external preparation for skin such as a sunscreen cosmetic, particularly to evaluate how a UV-ray protective effect is affected by heat. This evaluation method is characterized by including (1) a step for forming a coating film of an external preparation for skin on a substrate, (2) a step for heat-treating the coating film of the external preparation for skin, and (3) a step for measuring the UV-ray protective effect of the heat-treated coating film of the external preparation for skin. The heat treatment is preferably carried out for at least one minute at a temperature of 30-70° C.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 18, 2022
    Assignee: Shiseido Company, Ltd.
    Inventors: Kouichi Nagai, Kei Ujimoto, Marianne Ayaka Touati, Yuko Nagare, Satoshi Yamaki