Patents Examined by Meenakshi S Sahu
  • Patent number: 10444384
    Abstract: Boron nitride nanotubes (BNNTs) with 10B combined with a scintillation gas can serve as the basis for detecting thermal neutrons by detecting light from the decay products of the thermal neutron's absorption on the 10B atoms in the BNNT Material as the resultant decay products pass through the scintillating gas. BNNTs with 11B can be utilized as a scaffold for 238U and combined with a scintillation gas as the basis for detecting fast neutrons via detecting light from the fission decay products passing through the scintillating gas. Both technologies provide high spatial and temporal resolution for the detection of thermal neutrons and fast neutrons respectively.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: October 15, 2019
    Assignee: BNNT, LLC
    Inventors: Kevin C. Jordan, R. Roy Whitney
  • Patent number: 10438771
    Abstract: Provided is a measurement device including: an irradiation optical system which emits a primary charged quantum beam to a sample for scanning; a detector which detects secondary charged particles generated from the sample; and a signal processing unit which processes an output signal from the secondary charged particle detector which has detected the secondary charged particles, in which the signal processing unit includes a measurement unit which measures widths of a first pattern group calibrated with a well-known first dimension and a second pattern group calibrated with a well-known second dimension, and an operation unit which defines a relationship between the well-known dimensions of the first and second pattern groups and length measurement values of the first and second pattern groups as a function.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 8, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Michio Hatano, Yoshinori Nakayama, Masaru Matsuzaki, Hiroki Kawada, Yoshinori Momonoi, Zhigang Wang
  • Patent number: 10422888
    Abstract: Devices/apparatuses are disclosed that include a photoemitting component, a photosensitive component deposited on the photoemitting component, a charge collection component, and a hollow enclosure for housing the photoemitting component, the photosensitive component, the charge collection component, or combinations thereof. Methods for making and using the apparatuses are also disclosed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 24, 2019
    Assignee: Triad National Security, LLC
    Inventors: Kiril D. Ianakiev, Martyn Thomas Swinhoe, Markus Peter Hehlen, Metodi Iliev, Andrea Favalli
  • Patent number: 10416289
    Abstract: The invention describes an illumination device (100) for illuminating a three dimensional arrangement (250) in an infrared wavelength spectrum. The illumination device (100) comprises at least a first group of laser devices (110) comprising at least one laser device (105) and at least a second group of laser devices (120) comprising at least one laser device (105). The first and the second group of laser devices (110, 120) are adapted to be operated independent with respect to each other. The first group of laser devices (110) is adapted to emit laser light with a first emission characteristic and the second group of laser devices (120) is adapted to emit laser light with a second emission characteristic different from the first emission characteristic. The invention further describes a distance detection device (150) and a camera system (300) comprising such an illumination device (100).
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: September 17, 2019
    Assignee: PHILIPS PHOTONICS GMBH
    Inventors: Joachim Wilhelm Hellmig, Pieter Hoeven, Robert Van Der Kloet, Holger Moench
  • Patent number: 10408746
    Abstract: A system and method for determining impurities in a beverage grade gas such as CO2 or N2 relies on a coupling of FTIR analysis and UV fluorescence detection. Conversion of reduced sulphur present in some impurities to SO2 can be conducted using a furnace. In some cases, CO2 % also is determined.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: September 10, 2019
    Assignee: MLS ACQ, Inc.
    Inventors: Martin L. Spartz, Peter Paul Behnke, Charles Mark Phillips, Adam R. Klempner, Anthony S. Bonanno
  • Patent number: 10408038
    Abstract: A distance of a water flow path and a velocity of the water flow are calculated using data obtained from both a pulsed neutron sensor and distributed acoustic sensors. The two distance and velocity values are compared to obtain a first calculated distance and velocity. The distance of the water flow path and the velocity of the water flow are calculated using the Doppler data obtained from distributed Doppler sensors. The distance and velocity values are compared with the first calculated distance and first calculated velocity to obtain a second calculated distance and velocity values. The distance of the water flow path and the velocity of the water flow are calculated using temperature data obtained from distributed temperature sensors. The distance and velocity values are compared with the second calculated distance and velocity to determine a distance of a cement interface, and a velocity of a water flow therein.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 10, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Luis F. Quintero
  • Patent number: 10408969
    Abstract: Devices and methods for a rugged semiconductor radiation detector are provided. The semiconductor detector may include a hermetically sealed housing and a semiconductor disposed within the housing that has a first surface and a second surface opposite one another. A first metallization layer may at least partially cover the first surface of the semiconductor and a second metallization layer may at least partially cover the second surface of the semiconductor. The first metallization layer or the second metallization layer, or both, do not extend completely to an edge of the semiconductor, thereby providing a nonconductive buffer zone. This reduces electrical field stresses that occur when a voltage potential is applied between the first metallization layer and the second metallization layer and reduces a likelihood of electrical failure (e.g., due to arcing).
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: September 10, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Frederic Gicquel, Olivier G. Philip, Christian Stoller, Zilu Zhou
  • Patent number: 10393894
    Abstract: Systems and methods for neutron detection using tensioned metastable fluid detectors, using a single atom spectroscopy approach.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 27, 2019
    Assignee: Purdue Research Foundation
    Inventors: Rusi Pesi Taleyarkhan, Thomas Francis Grimes
  • Patent number: 10393650
    Abstract: It is provided a system for determining characteristics of an object or a sample comprising at least a first and a second transmitter unit, wherein the first transmitter unit is configured for transmitting first electromagnetic waves towards the object and the second transmitter unit is configured for transmitting second electromagnetic waves towards the object; at least one receiver unit) for receiving electromagnetic waves from the object, the receiver unit generating a receiver signal upon receipt of the electromagnetic waves from the object. The first and the second transmitter unit is configured in such a way that the first and the second electromagnetic waves are modulated differently in such a way that by demodulating the receiver signal, a portion of the receiver signal evoked by the first electromagnetic waves can be separated from a portion of the receiver signal evoked by the second electromagnetic waves. The system comprises an evaluating unit.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 27, 2019
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Thorsten Göbel, Roman Dietz
  • Patent number: 10386237
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 20, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Matthew Kita, Anuradha M. Agarwal
  • Patent number: 10386231
    Abstract: A carbon isotope analyzer 1 includes a carbon dioxide isotope generator 40 that includes a combustion unit that generates gas containing carbon dioxide isotope from carbon isotope, and a carbon dioxide isotope purifying unit; a spectrometer 10 including an optical resonator 11 having a pair of mirrors 12, and a photodetector 15 that determines the intensity of light transmitted from the optical resonator 11; and a light generator 20 including a light source 23, a first optical fiber 21 to transmit a light beam from the light source 23, a second optical fiber 22 for wavelength conversion, the second optical fiber 22 splitting from the first optical fiber 21 at a point and combining with the first optical fiber 21 at another point downstream of the splitting point, and a non-linear optical crystal 25 that generates light having the absorption wavelength of the carbon dioxide isotope on the basis of the difference in frequency between light beams transmitted through the optical crystal 25.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: August 20, 2019
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, SEKISUI MEDICAL CO., LTD.
    Inventors: Tetsuo Iguchi, Hideki Tomita, Norihiko Nishizawa, Takahiro Hirotsu, Satoshi Yuruzume, Ryohei Terabayashi, Toshinari Oh-Hara, Akira Ideno, Atsushi Sato
  • Patent number: 10379116
    Abstract: This invention relates to a detection system for measuring a fluorescent signal in a fluorescent assay. The system comprises a probe having a small sensing surface bound with a fluorescent label, and a light source and a detector both mounted at the proximal side of the sensing surface of the substrate. The invention also relates to a method for detecting an analyte in a liquid sample using a probe tip having a small surface area (?5 mm) and a high molecular weight polymer (?1 MD) having multiple binding molecules and multiple fluorescent labels. The binding reaction is accelerated by flowing the reaction solutions laterally and moving the probe tip up and down in the reaction vessels. The invention furthers relates to a fluorescent labeling composition comprising a cross-linked FICOLL® molecule having a plurality of binding molecules and a plurality of fluorescent labels.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 13, 2019
    Assignee: Access Medical Systems, LTD.
    Inventors: Hong Tan, Robert F. Zuk, Yushan Tan, Erhua Cao, Min Xia, Jun Chen
  • Patent number: 10379039
    Abstract: An NDIR gas sensor has high responsiveness and less noise and includes a radiating section arranged to radiate an infrared ray, a detecting section arranged to detect the infrared ray radiated by the radiating section, and a sample cell extending between the radiating section and the detecting section along a route of the infrared ray and covering the entire circumference of the route of the infrared ray. The sample cell includes a plurality of cell elements extending along the route of the infrared ray. Side portions of the cell elements adjacent to each other overlap at an interval from each other.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 13, 2019
    Assignees: Kyoto University, Masa International Corp.
    Inventors: Yu Tanaka, Shigeyuki Akiyama
  • Patent number: 10378958
    Abstract: An Infrared Detector Dewar system includes a housing and an infrared detector. The system also includes one or more strut members coupled on a first end to the housing. The system further includes cold shield coupled to the infrared detector and to a second end of the one or more strut members. The cold shield includes a reinforcement ring aligned with the one or more strut members. The cold shield is formed by forming a support member having disc encased by a support ring. The support member is positioned within a mandrel such that the reinforcement ring is disposed to align with a strut position. The cold shield is then formed by electroplating copper over the mandrel and at least a portion of the support member, and then by removing/dissolving all aforementioned mandrels.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: August 13, 2019
    Assignee: Raytheon Company
    Inventors: Gavin L. Avers, Michael L. Brest, Mark C. Elbogen, Christopher J. Cobb, Daniel W. Rinehart, Jason S. Graham
  • Patent number: 10345249
    Abstract: An x-ray spectrometer system includes: an excitation source that produces excitation particles and irradiates a sample with the excitation particles such that the sample produces x-rays; thermal detectors that: detect the x-rays from the sample; and produce digital x-ray data in response to detecting the x-rays from the sample, the x-ray data including x-ray pulses; and an analyzer that includes a multichannel receiver that receives, in parallel, the digital x-ray data from the thermal detectors and that: rejects pulse pileup in the digital x-ray data and produces pass data from the digital x-ray data; subjects the pass data to an optimal filter to produce filter data; determines a pulse height of x-ray pulses in the filter data to produce pulse data; combines the pulse data to produce combined data; and calibrates the combined data to produce calibrated data.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 9, 2019
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Terrence J. Jach, Stephen M. Thurgate
  • Patent number: 10345143
    Abstract: The use of silicon or vanadium oxide nanocomposite consisting of graphene deposited on top of an existing amorphous silicon or vanadium oxide microbolometer can result in a higher sensitivity IR detector. An IR bolometer type detector consisting of a thermally isolated nano-sized (<one micron feature size) electro-mechanical structure comprised of Si3N4, SiO2 thins films, suspended over a cavity with a copper thin film reflecting surface is described. On top of the suspended thin film is a nanostructure composite comprised of graphene monolayers, covered with various surface densities of VoXy or amorphous nanoparticles, followed by another graphene layer. The two conducting legs are connected to a readout integrated circuit (ROIC) fabricated on a CMOS wafer underneath. The nanostructure is fabricated after the completion of the ROIC process and is integrate able with the CMOS process.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: July 9, 2019
    Assignee: Magnolia Optical Technologies, Inc.
    Inventors: Elwood J. Egerton, Ashok K. Sood
  • Patent number: 10345154
    Abstract: An infrared sensor assembly for sensing infrared radiation comprises infrared sensing elements and the infrared sensing compensation elements that are different so that, for a same flux on the infrared sensing elements and the infrared sensing compensation elements, the radiation responsive element of the infrared sensing elements absorbs more radiation than the radiation responsive element of the infrared sensing compensation elements, as to receive substantially more radiation than the radiation responsive element of the infrared sensing compensation elements. An output of the sensor array is a subtractive function of a sum of the signals of the plurality of infrared sensing elements and a sum of the signals of the plurality of the infrared sensing compensation elements such that at least linear and/or non-linear parasitic thermal fluxes are at least partly compensated for.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 9, 2019
    Assignee: MELEXIS TECHNOLOGIES NV
    Inventors: Carl Van Buggenhout, Ben Maes, Karel Vanroye, Stijn Reekmans
  • Patent number: 10338235
    Abstract: The radiation detector according to the present invention is always able to calculate the summation value accurately, regardless of the intensity of the fluorescent emission that is produced in the scintillator. That is, if the method for calculating the summation value set forth in the present invention is used, then the number of instantaneous intensity data d that are added together each time a fluorescent emission is produced in the scintillator will be larger the greater the intensity of the fluorescent emission. Doing this prevents the intensity of an intense fluorescent emission from being understated. Moreover, the summing portion in the present invention is able to calculate the summation value with high reliability. This is because the instantaneous intensity data used in calculating the summation value are above a threshold value a, causing the signal-to-noise ratios to be adequately high and the reliability to be high as well.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: July 2, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Masayuki Nakazawa
  • Patent number: 10324201
    Abstract: An X-ray detector includes an N-channel digital-analogue converter controllable with K+L bits. In an embodiment, the digital-analogue converter includes a first voltage source to provide a plurality of first voltage values at tapping points; and a switch unit with N switch matrices, 2K inputs of the switch matrices being electrically conductively connected to 2K tapping points of the first voltage source. The digital-analogue converter also includes a second voltage source including N subunits. The X-ray detector further includes a discriminator unit including N comparators, at least one input of the comparators being electrically conductively connected to the associated output of the switch matrix and/or to the associated output of the subunit, so that the associated first voltage value and the associated second voltage value are associable with each comparator. A signal of an output of a pre-amplifier, and the associated first and second voltage values are comparable in the comparator.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: June 18, 2019
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Martin Groepl, Edgar Goederer, Thomas Suttorp
  • Patent number: 10310106
    Abstract: A dual/multi-energy x-ray image sensor with stacked two-dimensional pixel arrays. Each pixel in one pixel array has a corresponding “overlaid” pixel in the other pixel array. The pixel arrays are stacked parallel and aligned so that they are nominally normal to the x-ray path, and so that a straight path taken by an x-ray photon from the x-ray source to a pixel in one pixel array will also nominally intersect the corresponding pixel in the other pixel array(s). The energy image sensor provides an x-ray scanning detector system, which has increased signal levels and signal-to-noise ratios over dual- or multi-energy detectors using linear diode arrays, specifically when the pixel arrays are TDI pixel arrays that offer higher sensitivities in high-speed line-scan applications. Signal processing circuitry is placed on a periphery of the pixel arrays and shielded. Dual-to-multiple energy applications can be accomplished by increasing the number of stacked pixel arrays.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 4, 2019
    Assignee: X-Scan Imaging Corporation
    Inventors: Shizu Li, Linbo Yang, Nguyen Phuoc Luu, Chinlee Wang, Hsin-Fu Tseng