Patents Examined by Meera Natarajan
  • Patent number: 11969475
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: October 26, 2023
    Date of Patent: April 30, 2024
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 11965033
    Abstract: The present invention relates to a monoclonal mouse antibody produced by the hybridoma cell deposited under ICLC accession number ICLC PD n° 16001. Furthermore, the invention relates to an antibody comprising a heavy chain variable region comprising complementarity determining regions CDRH1, CDRH2 and CDRH3, and a light chain variable region comprising complementarity determining regions CDRL1, CDRL2 and CDRL3, wherein CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 comprise the amino acid sequences GFTFSSFGMH (SEQ ID NO: 1), YISSGSGNFYYVDTVKG (SEQ ID NO: 43), STYYHGSRGAMDY (SEQ ID NO: 3), SASSSVSSMYWY (SEQ ID NO: 4), DTSKMAS (SEQ ID NO: 5), and QQWSSYPPIT (SEQ ID NO: 6), respectively. In addition, the invention relates to antibodies recognizing the same epitope.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: April 23, 2024
    Assignee: UNIVERSITÀ DEGLI STUDI MAGNA GRAECIA CATANZARO
    Inventor: Pierfrancesco Tassone
  • Patent number: 11958907
    Abstract: This disclosure relates to antibodies that bind an epitope present on CD73 expressed at the surface of cells, including tumor cells, and that inhibit the enzymatic (ecto-5? nucleotidase) activity of the CD73 enzyme. Such agents can be used for the treatment of diseases such as cancers.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: April 16, 2024
    Assignee: INNATE PHARMA
    Inventors: Ivan Perrot, Carine Paturel, Laurent Gauthier
  • Patent number: 11952430
    Abstract: The present invention provides multispecific antigen-binding molecules that bind both a T-cell antigen (e.g., CD3) and a target antigen (e.g., a tumor associated antigen, a viral or bacterial antigen), and which include a single polypeptide chain that is multivalent (e.g., bivalent) with respect to T-cell antigen binding, and uses thereof.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: April 9, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lauric Haber, Jennifer A. Finney, Ryan McKay, Eric Smith, Chia-Yang Lin
  • Patent number: 11939379
    Abstract: Chemically induced dimerizers (AbCIDs) have emerged as one of the most powerful tools to artificially regulate signaling pathways in cells; however, no facile method to identify or design these systems currently exists. The present invention provides a methodology to rapidly generate antibody-based chemically induced dimerizers (AbCIDs) from known small-molecule-protein complexes by selecting for synthetic antibodies that recognize the chemical epitope created by the bound small molecule. Success of this strategy is demonstrated by generating ten chemically-inducible antibodies against the BCL-xL/ABT-737 complex. Three of the antibodies are highly selective for the BCL-xL/ABT-737 complex over BCL-xL alone. Two exemplary important cellular applications of AbCIDs are demonstrated by applying them intracellularly to induce CRISPRa-mediated gene expression and extracellularly to regulate CAR T-cell activation with the small molecule, ABT-737.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: March 26, 2024
    Assignee: The Regents of the University of California
    Inventors: James A Wells, Zachary B. Hill, Alexander J. Martinko
  • Patent number: 11939385
    Abstract: The present application provides activatable antibodies comprising an antibody comprising an antigen-binding domain (ABD), wherein the ABD comprises a heavy chain variable region (VH) and a light chain variable region (VL), wherein the N-terminus of the VH is fused to a first polypeptide shield moiety (S1), and the N-terminus of the VL is fused to a second polypeptide shield moiety (S2), wherein S1 comprises a first disease-sensing releasable moiety (DS1) and/or S2 comprises a second disease-sensing releasable moiety (DS2), wherein association of S1 with S2 blocks binding of the ABD to its target, and wherein the ABD does not specifically bind to S1, S2, or association thereof. Composition, methods of treatment using the activatable antibodies, and methods of preparation thereof are further provided.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 26, 2024
    Assignee: ALX ONCOLOGY INC.
    Inventors: Marija Vrljic, Jaume Pons
  • Patent number: 11926666
    Abstract: The present invention relates to a bispecific antibody construct comprising a first human binding domain which binds to human CDH3 on the surface of a target cell and a second binding domain which binds to human CDS on the surface of a T cell. Moreover, the invention provides a polynucleotide encoding the antibody construct, a vector comprising said polynucleotide and a host cell transformed or transected with said polynucleotide or vector. Furthermore, the invention provides a process for the production of the antibody construct of the invention, a medical use of said antibody construct and a kit comprising said antibody construct.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: March 12, 2024
    Assignee: AMGEN RESEARCH (MUNICH) GMBH
    Inventors: Bertram Weiss, Anna-Lena Frisk, Ruprecht Zierz, Peter Kufer, Tobias Raum, Doris Rau, Jonas Anlahr, Ralf Lutterbüse, Lisa Nahrwold, Christoph Dahlhoff, Claudia Blümel, Patrick Hoffmann
  • Patent number: 11918650
    Abstract: The present invention provides an improved pharmaceutical composition for storage and administration comprising (a) a bispecific antibody construct comprising a first domain binding to a target cell surface antigen and a second domain binding to a second antigen, wherein the bispecific antibody construct is present at a concentration in the range from about 0.5 ?g/ml to 20 mg/ml, (b) a preservative at a concentration effective to inhibit the growth of microbes, and (c) a diluent wherein bispecific antibody construct is stable and recoverable.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 5, 2024
    Assignee: AMGEN INC.
    Inventors: Jeff Abel, Lingwen Cui, Devrishi Goswami, Joon Huh, Bharadwaj Jagannathan, Sekhar Kanapuram, Arnold McAuley, Michael Schneider, Ananthakrishnan G. Sethuraman, Michael Treuheit, Jun Zhang
  • Patent number: 11905326
    Abstract: Multispecific, human heavy chain antibodies (e.g., UniAbs™) binding to CD22 and CD3 are disclosed, along with methods of making such antibodies, compositions, including pharmaceutical compositions, comprising such antibodies, and their use to treat disorders that are characterized by the expression of CD22.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 20, 2024
    Assignee: TeneoBio, Inc.
    Inventors: Nathan Trinklein, Udaya Rangaswamy, Suhasini Iyer, Kirthana Prabhakar, Harshad Ugamraj
  • Patent number: 11884722
    Abstract: Provided herein are antibodies that specifically bind to GPRC5D. Also described are related polynucleotides capable of encoding the provided GPRC5D-specific antibodies or antigen-binding fragments, cells expressing the provided antibodies or antigen-binding fragments, as well as associated vectors and detectably labeled antibodies or antigen-binding fragments. In addition, methods of using the provided antibodies are described. For example, the provided antibodies may be used to diagnose, treat, or monitor GPRC5D-expressing cancer progression, regression, or stability; to determine whether or not a patient should be treated for cancer; or to determine whether or not a subject is afflicted with GPRC5D-expressing cancer and thus may be amenable to treatment with a GPRC5D-specific anti-cancer therapeutic, such as the multispecific antibodies against GPRC5D and CD3 described herein.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: January 30, 2024
    Assignee: JANSSEN BIOTECH, INC.
    Inventors: Ricardo Attar, Francois Gaudet, Mark Tornetta, Alexey Teplyakov, Mark Mendonca, Suzanne Edavettal, Kodandaram Pillarisetti, Nathan Majewski, Yingzhe Li, Leopoldo L. Luistro, III, Diana Chin
  • Patent number: 11866498
    Abstract: The present invention provides bispecific antigen-binding molecules having a monovalent arm specific to a first target antigen (e.g., a T cell antigen, such as CD3) and a bivalent arm specific for a second target antigen (e.g., a tumor antigen, such as HER2). Bispecific antigen-binding molecules are useful in the treatment of disorders, such as cancer (e.g., HER2-positive cancer). The invention also features methods of producing bispecific antigen-binding molecules, methods of treating disorders using bispecific antigen-binding molecules, and compositions including bispecific antigen-binding molecules.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: January 9, 2024
    Assignee: Genentech, Inc.
    Inventors: Diego Ellerman, Teemu T. Junttila, Twyla Noelle Lombana, Dionysos Slaga, Christoph Spiess
  • Patent number: 11859009
    Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: January 2, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Gabriele Pszolla, Martin Hofmann, Meike Hutt, Sebastian Bunk, Felix Unverdorben, Frank Schwoebel, Dominik Maurer, Maike Jaworski, Claudia Wagner, Florian Schwoerer, Heiko Schuster
  • Patent number: 11851493
    Abstract: Antitumor antagonists that bind specifically to immune checkpoint regulator and/or components of the angiogenesis pathways and/or components of the TGF pathway are disclosed. Also disclosed is a method of treating proliferative disorders with the antitumor antagonists.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: December 26, 2023
    Assignee: GENSUN BIOPHARMA, INC.
    Inventors: Jackie Sheng, Bo Liu
  • Patent number: 11844843
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload inhibits expression or activity of DUX4. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide or RNAi oligonucleotide.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: December 19, 2023
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 11834510
    Abstract: Disclosed herein, in certain embodiments, are anti-transferrin receptor antibodies, anti-transferrin receptor antibody conjugates, and pharmaceutical compositions which comprise the anti-transferrin receptor antibodies or conjugates. In some embodiments, also disclosed herein are methods of delivering a payload utilizing an anti-transferrin receptor antibody described herein, and methods of treatment with use of an anti-transferrin receptor antibody described herein.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: December 5, 2023
    Assignee: AVIDITY BIOSCIENCES, INC.
    Inventors: Beatrice Diana Darimont, Venkata Ramana Doppalapudi, Rachel Johns
  • Patent number: 11827713
    Abstract: Provided is a chimeric antibody immune cell engager comprising a target cell binding domain that specifically binds to an antigen on a target cell, and an immune effector cell binding domain comprising an antigen-binding fragment that specifically binds to an antigen on an immune effector cell. Also provided are pharmaceutical compositions, kits and methods of treatment.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 28, 2023
    Assignee: Nanjing Legend Biotech Co., Ltd.
    Inventors: Xiaohu Fan, Qiuchuan Zhuang, Lei Yang, Pingyan Wang, Qingyan Li
  • Patent number: 11814435
    Abstract: The present invention relates to antibodies, e.g., full length antibodies or antigen binding fragments thereof, that specifically bind to BCMA (B-Cell Maturation Antigen) and/or CD3 (Cluster of Differentiation 3). The invention also relates to antibody conjugates (e.g., antibody-drug-conjugates) comprising the BCMA antibodies, compositions comprising the BCMA antibodies, and methods of using the BCMA antibodies and their conjugates for treating conditions associated with cells expressing BCMA (e.g., cancer or autoimmune disease). The invention further relates to heteromultimeric antibodies that specifically bind to CD3 and a tumor cell antigen, (e.g., bispecific antibodies that specifically bind to CD3 and BCMA). Compositions comprising such heteromultimeric antibodies, methods for producing and purifying such heterodimeric antibodies, and their use in diagnostics and therapeutics are also provided.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: November 14, 2023
    Assignee: PFIZER INC.
    Inventors: Tracy Chia-Chien Kuo, Javier Fernando Chaparro Riggers, Wei Chen, Amy Shaw-Ru Chen, Edward Derrick Pascua, Thomas John Van Blarcom, Leila Marie Boustany, Weihsien Ho, Yik Andy Yeung, Pavel Strop, Arvind Rajpal
  • Patent number: 11814430
    Abstract: The invention provides means, methods, and compositions of matter useful for enhancing tumor response to checkpoint inhibitors. In one embodiment, the invention teaches utilization of extracorporeal apheresis, specifically removal of various tumor derived, or tumor microenvironment derived immunological “blocking factors”. In one embodiment the invention provides the removal of soluble TNF-alpha receptors (sTNF-Rs) as a means of augmenting efficacy of immune checkpoint inhibitors. In one specific embodiment removal of sTNF-Rs is utilized to enhance efficacy of inhibitors of the PD-1/PD-L1 pathway, and/or the CD28/CTLA-4 pathway.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: November 14, 2023
    Assignee: IMMUNICOM, INC.
    Inventors: Thomas Emanuel Ichim, Steven Francis Josephs, Stephen Michael Prince, Amir Jafri, Robert Segal, David L. Schlotterbeck
  • Patent number: 11807661
    Abstract: Disclosed herein are compositions comprising a polypeptide with at least two domains, wherein the first domain is capable of binding CD3 and the second domain is capable of binding to a cancer cell. Also disclosed herein are methods of treating cancer in a subject, comprising: providing a composition comprising a polypeptide with at least two domains, wherein the first domain is capable of binding CD3 and the second domain is capable of binding to a cancer cell; and treating the cancer by administering a therapeutically effective dosage of the composition to the subject.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: November 7, 2023
    Assignees: Dignity Health, Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Rachael Sirianni, Rebecca Cook, Tsafrir Mor, Joseph Blattman
  • Patent number: 11802164
    Abstract: Methods and compositions are provided for assessing, treating, and preventing diseases, especially cancer, using cancer-associated targets (CAT). Methods and compositions are also provided for determining or predicting the effectiveness of a treatment for these diseases or for selecting a treatment, using CAT. Methods and compositions are further provided for modulating cell function using CAT. Also provided are compositions that modulate CAT (e.g., antagonists or agonists), such as antibodies, proteins, small molecule compounds, and nucleic acid agents (e.g., RNAi and antisense agents), as well as pharmaceutical compositions thereof. Further provided are methods of screening for agents that modulate CAT, and agents identified by these screening methods.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 31, 2023
    Assignee: Celera Corporation
    Inventors: Steve Ruben, Tao He, Candy Lee, Karen Van Orden, Paul Moore