Patents Examined by Meera Natarajan
  • Patent number: 12263203
    Abstract: Provided are methods of treating a tumor in a subject with a BTNL9-binding antibody. Also provided are methods of treating a tumor in a subject with an ERMAP-binding antibody. A fusion protein comprising a BTNL9 or ERMAP and related compositions and encoding nucleic acids are also provided.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 1, 2025
    Assignee: Albert Einstein College of Medicine
    Inventors: Xingxing Zang, Kaya Ghosh
  • Patent number: 12258416
    Abstract: Single domain antibodies are provided, which are capable of specifically binding to an epitope of a human complement factor selected from the group consisting of C1q, C3, C4 and/or the proteolytic derivatives C3b and C4b. Further the use of the antibodies are provided for methods in modulating the activity of the complement system as well as methods of treating disorders associated with complement activation.
    Type: Grant
    Filed: March 27, 2024
    Date of Patent: March 25, 2025
    Assignee: Aarhus Universitet
    Inventors: Nick Stub Laursen, Dennis Vestergaard Pedersen, Gregers Rom Andersen, Steffen Thiel, Alessandra Zarantonello, Rasmus Kjeldsen Jensen, Henrik Pedersen
  • Patent number: 12258580
    Abstract: The present disclosure provides methods for genetically engineering T cells, such as CD4+ T cells, for use in cell therapy. In some aspects, the provided methods include one or more steps for incubating the cells under stimulating conditions, introducing a recombinant polypeptide to the cells through transduction or transfection, and cultivating the cells under conditions that promote proliferation and/or expansion. In some aspects, the incubation and/or the cultivation is performed in the presence of recombinant IL-2. In some aspects, the provided methods are an efficient, reliable means to produce genetically engineered T cells with a high degree of success.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: March 25, 2025
    Assignee: Juno Therapeutics, Inc.
    Inventors: Sarah Y. Lee, Pascal Beauchesne, Mark L. Bonyhadi, Ryan L. Crisman, Ryan P. Larson, Mary Mallaney, Christopher Glen Ramsborg, Clinton Weber, John Matthew Wesner, Nathan Yee
  • Patent number: 12246066
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: March 21, 2023
    Date of Patent: March 11, 2025
    Assignees: AGENUS INC., Ludwig Institute for Cancer Research Ltd., Memorial Sloan Kettering Cancer Center
    Inventors: Marc Van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, Nicholas Stuart Wilson, David Adam Savitsky, Mark Arthur Findeis, Dennis John Underwood, Jean-Marie Cuillerot, Igor Proscurshim, Olga Shebanova
  • Patent number: 12239717
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: August 15, 2024
    Date of Patent: March 4, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 12239716
    Abstract: Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
    Type: Grant
    Filed: August 15, 2024
    Date of Patent: March 4, 2025
    Assignee: Dyne Therapeutics, Inc.
    Inventors: Romesh R. Subramanian, Mohammed T. Qatanani, Timothy Weeden, Cody A. Desjardins, Brendan Quinn, John Najim
  • Patent number: 12240914
    Abstract: Provided in the present application are an antibody against factor XIa in the activated form of coagulant factor XI, a preparation method therefor and the use thereof. The CDR of the heavy chain variable region of the antigen-binding fragment of the antibody comprises the amino acid sequence shown in SEQ ID NOs: 1-3, and the CDR of the light chain variable region thereof comprises the amino acid sequence shown in SEQ ID NOs: 4-6. The antibody can specifically bind to FXIa but not to FXI, and has the effect of inhibiting the endogenous pathway of human coagulation without affecting the exogenous pathway thereof, which can significantly inhibit the formation of arteriovenous shunt thrombosis, but does not increase the bleeding time and volume. Same has the potential to become an antithrombotic drug.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 4, 2025
    Assignee: MAB-LEGEND BIOTECH CO., LTD.
    Inventors: Shaoxiong Wang, Juehua Xu, Yunhua Zhou, Yongfeng Chen
  • Patent number: 12241068
    Abstract: The present invention provides a chimeric antigen receptor (CAR) which specifically binds CD79 as well as a nucleic acid sequence and a vector encoding the CAR. It further provides a cell which expresses the CAR at the cell surface.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 4, 2025
    Assignee: AUTOLUS LIMITED
    Inventors: Martin Pulé, Shaun Cordoba, Simon Thomas, Shimobi Onuoha, Mathieu Ferrari
  • Patent number: 12234291
    Abstract: The present disclosure relates to biologically active molecules comprising a single domain antibody (sdAb) that specifically binds to the extracellular domain of IL2Rb, compositions comprising such antibodies, and methods of use thereof.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: February 25, 2025
    Assignee: Synthekine, Inc.
    Inventors: Robert Kastelein, Deepti Rokkam, Patrick J. Lupardus, Sandro Vivona
  • Patent number: 12226482
    Abstract: The invention provides anti-SIRPA antibodies, methods of generating such antibodies, and therapeutic uses and methods employing the antibodies.
    Type: Grant
    Filed: August 23, 2023
    Date of Patent: February 18, 2025
    Assignee: Alector LLC
    Inventors: Andrew Pincetic, Arnon Rosenthal, Seung-Joo Lee
  • Patent number: 12215159
    Abstract: The invention relates generally to anti-CD161 antibodies, pharmaceutical compositions comprising such antibodies, and methods of using such antibodies for treating disorders associated with or mediated by CD161, for example, certain cancers. In addition, the invention also relates to expression vectors and host cells for making these antibodies.
    Type: Grant
    Filed: February 21, 2024
    Date of Patent: February 4, 2025
    Assignee: IMMUNITAS THERAPEUTICS, INC.
    Inventors: Alison Tisdale, Uli Bialucha, George Punkosdy, Alexandria Fusco, Frano Irvine, Emily Rosentrater, Elizabeth Scanlon, Michael Battles
  • Patent number: 12215164
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Grant
    Filed: September 20, 2023
    Date of Patent: February 4, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Patent number: 12202910
    Abstract: The present invention provides antibodies that specifically bind to FLT3 (Fms-Like Tyrosine Kinase 3). The invention further provides bispecific antibodies that bind to FLT3 and another antigen (e.g., CD3). The invention further relates to antibody encoding nucleic acids, and methods of obtaining such antibodies (monospecific and bispecific). The invention further relates to therapeutic methods for use of these antibodies for the treatment of FLT3-mediated pathologies, including cancer such as Acute Myeloid Leukemia (AML).
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: January 21, 2025
    Assignee: PFIZER INC.
    Inventors: Danielle Elizabeth Dettling, Yik Andy Yeung, Kristian Todd Poulsen, Veena Krishnamoorthy, Cesar Adolfo Sommer
  • Patent number: 12195535
    Abstract: The present application relates to antibodies specifically binding to the V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA) at acidic pH and their use in cancer treatment. In some embodiments, the antibodies bind specifically to human VISTA at acidic pH, but do not significantly bind to human VISTA at neutral or physiological pH.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 14, 2025
    Assignees: Five Prime Therapeutics, Inc., Bristol-Myers Squibb Company
    Inventors: Robert J. Johnston, Arvind Rajpal, Paul O. Sheppard, Luis Borges, Andrew Rankin, Keith Sadoon Bahjat, Alan J. Korman, Andy X. Deng, Lin Hui Su, Ginger Rakestraw
  • Patent number: 12195529
    Abstract: The invention provides bispecific heterodimeric antibodies with modified heavy chain IgG constant regions that promote efficient assembly of antibody heavy chain heterodimer pairs, as well as arm specific pairing of heavy and light chains.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: January 14, 2025
    Assignee: GSBIO, LLC
    Inventor: Guriqbal S. Basi
  • Patent number: 12195533
    Abstract: The invention relates generally to multispecific polypeptides that bind at least CD3, a second antigen, and a receptor of a T cell, such as a costimulatory receptor or an inhibitory receptor, in which the multispecific polypeptide constructs are able to engage CD3. In some embodiments, the multispecific polypeptide constructs bind a costimulatory receptor and provide costimulatory binding activity. In some embodiments, the multispecific polypeptide constructs bind an inhibitory receptor and block inhibitory activity. In some aspects, the multispecific polypeptides have constrained CD3 binding and bind to or engage CD3 only upon binding to the second antigen, such as a tumor associated antigen. In some embodiments, the multispecific polypeptides contain cleavable linkers that, when cleaved, result in dual effector functions. Also provided are methods of making and using these multispecific polypeptides in a variety of therapeutic, diagnostic and prophylactic indications.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 14, 2025
    Assignee: Inhibrx Biosciences, Inc.
    Inventors: Brendan P. Eckelman, Michael D. Kaplan, Katelyn M. Willis, Quinn Deveraux, Kyle S. Jones, Rajay A. Pandit, John C. Timmer
  • Patent number: 12186278
    Abstract: Provided are compositions and methods for treating diseases associated with expression of mesothelin comprising administering a cell that expresses a chimeric antigen receptor (CAR) specific to mesothelin in combination with a PD-L1 inhibitor.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: January 7, 2025
    Assignees: Novartis AG, The Trustees of the University of Pennsylvania, Dana Farber Cancer Institute, Inc., President and Fellows of Harvard College
    Inventors: Jennifer Brogdon, Hwai Wen Chang, Boris Engels, Gordon James Freeman, Gerhard Johann Frey, Jennifer Marie Mataraza, Reshma Singh, Arlene Helen Sharpe
  • Patent number: 12187797
    Abstract: Provided herein are antibodies that bind signal regulatory protein gamma (SIRP?), as well as SIRP? and/or SIRP?1, and methods of using such antibodies (referred to as SIRP antibodies). In some embodiments, the SIRP antibodies are human monoclonal antibodies that bind human SIRP? as well as SIRP? and/or SIRP?1. In some embodiments, the SIRP antibodies provided herein are useful for treating a disease or condition associated with overactivation and/or hyperproliferation of lymphocytes, myeloid cells, or a combination thereof, or a disease or condition associated with SIRP?, SIRP?1 and/or SIRP? activity.
    Type: Grant
    Filed: February 28, 2024
    Date of Patent: January 7, 2025
    Assignee: Electra Therapeutics, Inc.
    Inventors: Sandip Panicker, Adam David Rosenthal, Eileen Lingshu Rose
  • Patent number: 12178858
    Abstract: [Problem] To provide a pharmaceutical composition containing a fusion protein comprising an antibody and a lysosomal enzyme as an active ingredient, which is stable enough to permit its distribution to the market. [Solution] A lyophilized formulation containing; a fusion protein comprising an antibody and a lysosomal enzyme as an active ingredient, and further containing a neutral salt, a disaccharide, a nonionic surfactant, and a buffer. Such a lyophilized formulation includes, for example, as an active ingredient, a fusion protein comprising an anti-transferrin receptor antibody and human iduronate-2-sulfatase, and further containing sodium chloride as the neutral salt, sucrose as the disaccharide, poloxamer as the nonionic surfactant, and phosphate buffer as the buffer.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: December 31, 2024
    Assignee: JCR Pharmaceuticals Co., Ltd.
    Inventors: Hidehito Yasukawa, Yuka Yamaguchi, Shinji Okabe
  • Patent number: 12178787
    Abstract: Provided are T cell receptors (TCR) and TCR variable regions that can selectively bind SLC45A2. The TCR may be utilized in various therapies, such as autologous cell transplantation, to treat a cancer, such as a cutaneous melanoma, uveal melanoma, a mucosal melanoma, or a metastatic melanoma. Methods for expanding a population of T cells that target SLC45A2 are also provided.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 31, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gregory Lizée, Cassian Yee