Patents Examined by Melissa A Rioja
  • Patent number: 10899903
    Abstract: The scope of this invention is to disclose the method of foaming a superior impact mitigation material, namely semi-closed cell hybrid polyurea foam, using scalable manufacturing process that is geometry-independent and allows for greater control of the resulting foam properties. while the process discussed herein, can be easily used to make complex geometries (e.g., padding foam for helmets, outsoles for walking and running shoes, body armors or other protection applications.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 26, 2021
    Assignee: San Diego State University Research Foundation
    Inventors: George Youssef, Nathan Reed
  • Patent number: 10899911
    Abstract: The present invention provides dialkyl phosphorus-containing compounds, namely reactive mono-hydroxyl-functional dialkyl phosphinates, serving as highly efficient reactive flame retardants in flexible polyurethane foams. The invention further provides fire-retarded polyurethane compositions comprising said the reaction product of the mono-hydroxyl-functional dialkyl phosphinates with polyol and isocyanate foam forming components.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 26, 2021
    Assignee: ICL-IP America Inc.
    Inventors: Andrew Piotrowski, Joseph Zilberman, Jeffrey Stowell, Mark Gelmont, Mayank Singh, Zhihao Chen, Eran Gluz
  • Patent number: 10882968
    Abstract: The present disclosure provides a linear polypropylene foam with, for example, low density and/or high expansion ratio, said linear polypropylene foam comprising at least one polypropylene, at least one alpha nucleating agent, and at least one beta nucleating agent. The present disclosure also provides compositions and processes for making said linear polypropylene foam.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 5, 2021
    Assignee: LCY CHEMICAL CORPORATION
    Inventor: Chiang Hsiang Lin
  • Patent number: 10865285
    Abstract: Two-component formulation for producing open-cell flexible foams having compressive strength of ?1N/cm2, contained in 2-component aerosol can with crosslinker sleeve which can be opened prior to deploying formulation from aerosol can wherein the contents thereof enter aerosol can, wherein first component is present in aerosol can and second component that is reactive to first component is present separately in crosslinker sleeve and wherein aerosol can includes prepolymer composed of 25-35% by weight MDI and 40-55% by weight of polyol mixture having free isocyanate groups, and 10-21% by weight of propellant gas mixture and crosslinker sleeve includes 4-10% by weight of crosslinker mixture, wherein weight data are based on weight of formulation.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 15, 2020
    Assignee: SIKA TECHNOLOGY AG
    Inventor: Natalie Wagner
  • Patent number: 10851018
    Abstract: An aggregate includes a polymeric foam present in a range of about 80 vol % to about 85 vol % of the aggregate. A cementitious matrix is present in a range of about 10 vol % to about 13 vol % of the aggregate. One or more resins are present in an amount of less than about 2 vol % of the aggregate, and one or more reinforcing fibers are present in an amount of less than about 1 vol % of the aggregate.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: December 1, 2020
    Inventor: Ali Amirzadeh
  • Patent number: 10836882
    Abstract: The present disclosure relates to a modified polyester polyol composition useful in the formulation of polyurethane and polyisocyanurate cellular polymers for use in making foam articles with hydrocarbon blowing agents. The modified polyester polyol composition comprises the reaction product of a polyol with an EO/PO block copolymer having a weight average molecular weight from 1,000 to 20,000 g/mol and has a viscosity in the range of 100 to 10,000 centipoise, as determined at 25° C. according to the ASTM D-4878 method.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: November 17, 2020
    Assignee: INVISTA North America S.a.r.l.
    Inventor: Carina A. McAdams
  • Patent number: 10829584
    Abstract: A high-resiliency polyurethane foam comprises the reaction product of an isocyanate and an isocyanate-reactive component. The isocyanate-reactive component comprises a first polyether polyol in an amount of greater than about 5 parts by weight and a second polyether polyol in an amount of less than about 80 parts by weight, with parts by weight based on the total weight of the isocyanate-reactive component. The high-resiliency polyurethane foam has a resilience of about 45 to about 70% when tested in accordance with ASTM D3574-11. A method of forming a high-resiliency polyurethane foam includes the steps of providing the isocyanate and the isocyanate-reactive component and reacting the isocyanate and the isocyanate-reactive component.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 10, 2020
    Assignee: BASF SE
    Inventors: Yeonsuk K. Roh, Steven E. Wujcik
  • Patent number: 10815353
    Abstract: A composition for a single-component polyurethane foam and a method of using the same. The composition comprises a polyether or polyester or a combination thereof with functionality 2 and a hydroxyl number between about 22 mgKOH/g and about 374 mgKOH/g, a polyether or polyester or a combination thereof with functionality 3 and a hydroxyl number between about 84 mgKOH/g and about 842 mgKOH/g, a fire-retarding agent, a silicone stabilizer, a catalyst, polymeric diphenylmethane diisocyanate, a dimethyl ether, propane, isobutane or a combination thereof, and 1,1-difluoroethane or any other Freon, or any combination thereof.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 27, 2020
    Inventors: Konstantin Dragan, Vitalii Titorov
  • Patent number: 10808068
    Abstract: Processes for manufacturing novolacs and resoles from lignin are disclosed. A phenol-aldehyde-lignin dispersion is formed which can then be used to make either a novolac or a resole, depending upon the catalysts used.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 20, 2020
    Assignee: HEXION INC.
    Inventors: Anthony Maiorana, Srirama N. Maddipatla Venkata, Stephen W. Arbuckle, Ganapathy Viswanathan
  • Patent number: 10759920
    Abstract: The present disclosure relates to compositions comprising E-1,1,1,4,4,4-hexafluoro-2-butene and additional compounds that may be useful as refrigerants, heat transfer compositions, aerosol propellants, foaming agents, blowing agents, solvents, cleaning agents, carrier fluids, displacement drying agents, buffing abrasion agents, polymerization media, expansion agents for polyolefins and polyurethane, gaseous dielectrics, power cycle working fluids, extinguishing agents, and fire suppression agents in liquid or vapor form, and in methods for detecting leaks.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 1, 2020
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Mario Joseph Nappa, Xuehui Sun, Ivan Sergeyevich Baldychev, Sheng Peng, Konstantinos Kontomaris, Barbara Haviland Minor, Joseph Anthony Creazzo
  • Patent number: 10759896
    Abstract: Provided is a method for producing a light rigid urethane foam superior in moldability (cell interconnection, spraying thickness, adhesiveness, etc.), heat-insulating efficiency, and others by a spraying method, using water as foaming agent. A method for producing an open-cell polyurethane foam, comprising obtaining the open-cell polyurethane foam by mixing and reacting a polyol composition containing a polyol compound, water as a foaming agent, a foam stabilizer, a catalyst, and a flame retardant with a polyisocyanate compound by a spraying method, the polyol compound containing polyols (A), (B), and (C) at a polyol (A) content of 10 to 40 wt parts, a polyol (B) content of 10 to 70 wt parts, and a polyol (C) content of 10 to 70 wt parts.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: September 1, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Hideki Wada, Takayasu Tanabe, Kenichi Sakata
  • Patent number: 10745535
    Abstract: A sponge for oil-water separation, which is prepared by reacting a polyol blend with a polyisocyanate and graphene, in the presence of a catalyst, a foaming agent and a foam stabilizer. The polyol blend includes: a first polyol component having a hydroxyl number of 33 to 60 mg KOH/g and an oxyethylene content of 50 to 80 mol %; a second polyol component having a hydroxyl number of 80 to 300 mg KOH/g and having an oxyethylene content of 50 to 80 mol %; a graft polyol component having a hydroxyl number of 20 to 40 mg KOH/g; a tetrafunctional polyol component having a hydroxyl number of 350 to 650 mg KOH/g; and glycerol.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Chen Chi Hsiang Industry Limited
    Inventors: Yu-Hsiang Liu, Shih-Chung Chen
  • Patent number: 10730996
    Abstract: Polyurethane foams including a polyurethane prepolymer composition, a catalyst, and a propellant are provided. The polyurethane prepolymer composition is produced from a formulation that includes an isocyanate reactive component in an amount of from about 1% to about 70% by weight based on the polyurethane prepolymer composition and an isocyanate component in an amount of from about 1% to about 70% by weight based on the polyurethane prepolymer composition. The isocyanate component includes toluene diisocyanate biuret in an amount of from about 1 to about 100% by weight based on the isocyanate component. The isocyanate reactive component includes one or more polyols. The polyurethane prepolymer composition has a viscosity of less than about 10,000 mPa*s at 50° C. and is substantially free of monofunctional reactive components. The polyurethane prepolymer composition also includes a free isocyanate monomer content of the toluene diisocyanate biuret of less than about 1% by weight.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 4, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Giuseppe Lista, Alessandra Mosca
  • Patent number: 10723831
    Abstract: A polyol component b) comprising: 20 to 40 wt % of polyetherester polyols B) having a functionality of 3.8 to 4.8, an OH number of 380 to 440 mg KOH/g and a fatty acid and/or fatty acid ester content of 8 to 17 wt %, based on the weight of polyetherester polyols B); 20 to 40 wt % of polyether polyols C) having a functionality of 3.7 to 4 and an OH number of 300 to 420 mg KOH/g; 20 to 40 wt % of one or more polyether polyols D) having a functionality of 4.5 to 6.5 and an OH number of 400 to 520 mg KOH/g; 0.5 to 5.5 wt % of catalysts E), 0.1 to 5 wt % of further auxiliaries and/or added-substance materials F), 0.5 to 5 wt % of water G); and also rigid polyurethane foams obtained therewith and use thereof for insulation and refrigeration applications.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: July 28, 2020
    Assignee: BASF SE
    Inventors: Sebastian Koch, Michele Gatti, Mark Elbing, Christian Koenig, Johann Klassen
  • Patent number: 10710410
    Abstract: Polyurethane elastomeric compositions for making tires, methods for making said tires and tires made of said polyurethane elastomers. Said tires are in particular suitable for use as tires for low speed vehicles such as bicycle tires.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: July 14, 2020
    Assignee: HUNTSMAN INTERNATIONAL LLC
    Inventors: Johan Van Dyck, Dieter Niclaes, Siddharth Sahu
  • Patent number: 10696811
    Abstract: A flexible material for thermal and acoustical insulation comprising an expanded polymer (blend) based on at least one elastomer, wherein expansion is achieved by decomposition of a mixture of at least two chemical blowing agents, comprising the exothermic chemical blowing agent 4,4?-Oxybis(benzenesulfonyl hydrazide) (OBSH) and at least one endothermic blowing agent.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 30, 2020
    Assignee: ARMACELL ENTERPRISE GMBH & CO. KG
    Inventors: Christoph Zauner, Miroslav Bettermann
  • Patent number: 10696777
    Abstract: A polyurethane composition comprising a mixture comprising at least two aldehyde scavengers, a polyurethane product, and a process for making polyurethane foam are disclosed. The mixture of scavenger compounds can reduce, if not eliminate, the emissions of aldehydes from polyurethane foams. The scavenger compounds comprise at least one member selected from the group consisting of: phenol or substituted phenol, a 1,3-dicarbonyl compound, a polyamine bearing a 1,3-propanediamino function, melamine, a 1,2-diaminocycloalkane, an ammonium salt, and aminosiloxane.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 30, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Juan Jesus Burdeniuc, Gauri Sankar Lal, Jennifer Elizabeth Antoline Al-Rashid, Torsten Panitzsch
  • Patent number: 10676596
    Abstract: The invention discloses an antibacterial mildewproof polyurethane composite material containing natural plant and a preparing method thereof. The composite material comprises component A and component B with a ratio of component A and component B being 100:(20-50) by weight. The component A by weight comprises: 30-60 parts plant oil polyether polyols; 20-50 parts polyether polyols I; 5-20 parts polyether polyols II; 5-20 parts composite plant extract; 0-0.5 parts catalyst; 0.5-2 parts surfactant; 0-2 parts cross-linking agent; 1.5-3 parts foaming agents. The component B by weight comprising 20-50 parts modified MDI. The composite material made according to the preparation method of the invention shows a good stability and the polyurethane products made according to the preparation method is degradable. The antibacterial mildewproof natural plant adopted by the composite material in the invention enables the composite material to prevent the bacteria breeding effectively and provides environmental protection.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: June 9, 2020
    Assignee: STEVEN MARKETING INTERNATIONAL, INC.
    Inventors: Kai Hsuan Lin, Ren Ma
  • Patent number: 10676559
    Abstract: A flame-retardant urethane resin composition comprises a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer, and an additive, in which the trimerization catalyst is at least one selected from the group consisting of a nitrogen-containing aromatic compound, a carboxylic acid alkali metal salt, a tertiary ammonium salt, and a quaternary ammonium salt, and the additive comprises red phosphorus and at least one selected from the group consisting of a phosphoric acid ester, a phosphate-containing flame retardant, a bromine-containing flame retardant, a boron-containing flame retardant, an antimony-containing flame retardant, and a metal hydroxide.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: June 9, 2020
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Taichi Makida, Toshitaka Yoshitake, Yousuke Okada, Takehiko Ushimi
  • Patent number: 10676582
    Abstract: Polyurethane foams having a NFPA 101 Class B rating (ASTM E-84) which pass the FM 4450 Calorimeter Test are produced by reacting: (a) an organic polyisocyanate, (b) at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, (c) a blowing agent composition and (d) at least one halogen-free flame retardant. The blowing agent composition includes: (1) no more than 10% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air, and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air, and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: June 9, 2020
    Assignee: Covestro LLC
    Inventors: George G. Combs, Susan C. Pigott