Patents Examined by Melissa J Koval
  • Patent number: 10969517
    Abstract: RCP pulses are used to calibrate an NMR logging tool with a quadrature antenna. Using a number of RCP pulses provides NMR signals that can be used to find optimal positioning for antennas on the quadrature antenna. Optimally positioning antennas provides accurate values for NMR signal measurements. Employing an optimally positioned quadrature antenna readily enables the NMR logging tool to produce CP pulses and RCP pulses.
    Type: Grant
    Filed: February 23, 2020
    Date of Patent: April 6, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Rebecca Corina Jachmann, Yunzhao Xing
  • Patent number: 10969441
    Abstract: In various embodiments, an illumination apparatus is provided. The illumination apparatus includes a housing, in which at least one radiation source is fixed. A phosphor that is fastened to the housing is arranged downstream of the radiation source. The phosphor is connected to a crack detector, which is used for crack monitoring of the phosphor. A signal path is provided. The signal path connects the crack detector to an evaluation unit that is fixed to the housing. The signal path is formed by at least two contact pins and a flexible printed circuit board that is connected to the crack detector.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: April 6, 2021
    Assignee: OSRAM GmbH
    Inventors: Ingo Schmidt, Melanie Zumkley, Daniel Vogel
  • Patent number: 10969422
    Abstract: An embodiment of the invention may include a method and structure for determining a failure in a guard ring of a chip. The method may include measuring a current frequency of oscillation of a crack check circuit located within a guard ring. The method may include comparing the frequency to a baseline frequency of oscillation of the crack check circuit. The current frequency and baseline frequency may be normalized using a set of bypass lines. The method may include determining there is a failure of the guard ring based on the difference between the normalized frequency of oscillation and the baseline normalized frequency of oscillation.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: April 6, 2021
    Assignee: International Business Machines Corporation
    Inventors: Grant P. Kesselring, James D. Strom, Ann Chen Wu
  • Patent number: 10962565
    Abstract: There is provided a substrate inspection apparatus capable of inspecting the electrical characteristics of a packaged semiconductor device in a mounting environment. A prober includes a test box, a probe card and a package inspection card. A packaged device is attached to the package inspection card. A test board of the test box and a card board of the package inspection card reproduce the mounting environment in which a wafer-level system-level test is performed.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 30, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Michio Murata, Tatsuo Kawashima
  • Patent number: 10962586
    Abstract: Embodiments relate to functional test methods useful for fabricating products containing Light Emitting Diode (LED) structures. In particular, LED arrays are functionally tested by injecting current via a displacement current coupling device using a field plate comprising of an electrode and insulator placed in close proximity to the LED array. A controlled voltage waveform is then applied to the field plate electrode to excite the LED devices in parallel for high-throughput. A camera records the individual light emission resulting from the electrical excitation to yield a function test of a plurality of LED devices. Changing the voltage conditions can excite the LEDs at differing current density levels to functionally measure external quantum efficiency and other important device functional parameters.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventor: Francois J. Henley
  • Patent number: 10962617
    Abstract: Methods for fast magnetic resonance imaging (“MRI”) using a combination of outer volume suppression (“OVS”) and accelerated imaging, which may include simultaneous multislice (“SMS”) imaging, data acquisitions amenable to compressed sensing reconstructions, or combinations thereof. The methods described here do not introduce fold-over artifacts that are otherwise common to reduced field-of-view (“FOV”) techniques.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: March 30, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Sebastian Weingartner, Steen Moeller, Mehmet Akcakaya
  • Patent number: 10962567
    Abstract: A probe system for facilitating inspection of a device under test comprising a plurality of panels, the probe system incorporating: a configurable universal probe bar comprising a plurality of probe blocks, the plurality of probe blocks comprising a plurality of probe pins positioned to simultaneously electrically engage a plurality of cell contact pads of the plurality of panels of the device under test to deliver a plurality of electrical test signals; and an alignment system configured to achieve an alignment of the plurality of probe pins with the plurality of the cell contact pads of the plurality of panels of the device under test.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: March 30, 2021
    Inventors: Gordon Yue, Lloyd Russell Jones, Neil Dang Nguyen, Kiran Jitendra, Kent Nguyen, Steven Aochi
  • Patent number: 10955489
    Abstract: Power conversion systems, disclosed examples include power conversion systems, ground fault detection apparatus and methods to detect and identify ground faults in a power conversion system using AC coupling to sense a system voltage to determine a leakage flux linkage, and to identify a faulted converter phase based on a phase shift angle of the leakage flux linkage.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 23, 2021
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Rangarajan M. Tallam, Jiangang Hu, Brian P. Brown
  • Patent number: 10955512
    Abstract: An electron paramagnetic resonance (EPR) apparatus, such as an EPR spectrometer or an EPR imager, comprising a main field magnet with two opposed pole pieces defining an airgap between them, a microwave resonator coupled with a microwave guide, a sample holder and a current source adapted to be used as a coil driver, also comprises a rapid scan (RS) coil assembly with two opposed RS coil devices. Each coil device comprises: i) a coil support having a plate like body and comprising recesses designed to accommodate the at least one coil winding and at least one cooling chamber volume which is connected to cooling liquid supply channels; and ii) RF shielding comprising an electrically conducting, non-magnetic, shielding plate which is mounted laterally onto the coil support, between the coil winding(s) and a corresponding pole piece of the main field magnet, and contacts the cooling chamber volume.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: March 23, 2021
    Inventors: Sébastien Breham, Frédéric Jaspard, Eric Beyer
  • Patent number: 10948524
    Abstract: The objective of the present invention is to provide a relay-welding detection device and method, the device and method capable of determining, whether a relay is welded, by using an analog-digital converter (ADC). Another relay-welding detection device according to the present invention comprises: a first ADC for measuring a voltage of a relay input terminal; a second ADC for measuring a voltage of a relay output terminal; and a CPU for comparing the voltage of the relay input terminal with the voltage of the relay output terminal and determining whether the relay is welded.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: March 16, 2021
    Assignee: LSIS CO., LTD.
    Inventor: Bumyoul Kim
  • Patent number: 10945753
    Abstract: Systems (10) and methods (12) of controlling an ultrasonic surgical tool (20) with a console (22) are provided. A first drive signal (40) is applied to the ultrasonic surgical tool (20). A characteristic of a harmonic signal (44) resulting from application of the first drive signal (40) to the ultrasonic surgical tool (20) is acquired. A cancellation signal (70) is generated based on the characteristic of the harmonic signal (44). The first drive signal (40) and the cancellation signal (70) are combined to produce a second drive signal (80) that is sinusoidal. The second drive signal (80) is applied to the ultrasonic surgical tool (20) such that presence of the harmonic signal (44) resulting from application of the second drive signal (80) is reduced relative to presence of the harmonic signal (44) resulting from application of the first drive signal (40).
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: March 16, 2021
    Assignee: Stryker Corporation
    Inventor: Adam Darwin Downey
  • Patent number: 10948521
    Abstract: Systems and methods for measuring low energy voltage in a high energy transmission line electrode divider network. A floating reference voltage screen is positioned between a high energy transmission line electrode and a ground plate at a distance from the high energy transmission line electrode that is shorter than a distance between the ground plate and the floating reference voltage screen. A first conductive lead electrically couples the high energy analog transmission line electrode to a first input of a voltmeter that is connected to a controller. A second conductive lead electrically couples the floating reference voltage screen to a second input of the voltmeter. An alternating voltage drop is measured across the high energy transmission line electrode and the floating reference voltage screen by electronics of the voltmeter connected to the controller. The controller and the voltmeter are both disconnected from the ground plate.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: March 16, 2021
    Assignee: G & W Electric Company
    Inventor: Blair S. Kerr
  • Patent number: 10942213
    Abstract: The device for testing a motherboard includes a power adapter, a first DC-DC converter, and a microcontroller. The power adapter converts an AC input voltage to a DC supply voltage. The DC-DC converter converts the DC supply voltage to a DC voltage at a channel coupled to the motherboard, and adjusts a voltage level of the DC voltage in response to a control signal. The DC-DC converter is enabled according to an enable signal. The microcontroller is configured to provide the control signal and the enable signal, and to determine whether a power on/off operation of the motherboard is normal. The microcontroller is configured to perform a test procedure on the motherboard to obtain a workable voltage range of the motherboard. The voltage level of the DC voltage in the test procedure is dynamically adjusted within a predetermined range around a nominal voltage value of the DC voltage.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 9, 2021
    Assignee: DFI Inc.
    Inventors: Chia-yi Chang, Chien-Ming Yu, Jheng-Rong Cai
  • Patent number: 10935609
    Abstract: An example method of operating a solidly grounded, multi-source, multi-phase power distribution system having coupled neutral conductors is disclosed. The power distribution system includes a bus, a plurality of source protection devices coupled to the bus, and a plurality of feeder protection devices coupled to the bus. The method includes receiving, for each source protection device of the plurality of source protection devices, data indicative of detected source phase currents associated with the source protection device. Data indicative of detected feeder neutral currents and detected feeder phase currents associated with the feeder protection device are received for each feeder protection device of the plurality of feeder protection devices. A net source ground fault current associated with the plurality of source protection devices is determined based on the received data indicative of source phase currents and the received data indicative of feeder neutral currents and feeder phase currents.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 2, 2021
    Assignee: ABB Schweiz AG
    Inventor: Marcelo Esteban Valdes
  • Patent number: 10935598
    Abstract: Fault detection circuitry and a corresponding method are disclosed. A count value that is indicative of the switching period of a PWM signal is determined and it is determined whether this count value is between a first threshold and a second threshold. An error signal is generated when the switching period is not between the first and the second threshold. A count value that is indicative of the switch-on duration of the PWM signal is determined and compared with a switch-on threshold in order to determine whether the switch-on duration is greater than a maximum switch-on duration. A count value that is indicative of the switch-off duration of the PWM signal is determined and compared with a switch-off threshold in order to determine whether the switch-off duration is greater than a maximum switch-off duration. Error signals can be generated when the durations are greater than the maximum durations.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: March 2, 2021
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Giuseppe D'Angelo
  • Patent number: 10914609
    Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 9, 2021
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Edwin Schapendonk, Dennis Helmboldt, Jaap Ruigrok, Ralf van Otten, Jan Przytarski, Jörg Kock
  • Patent number: 10914759
    Abstract: The invention relates to a method for placing and contacting a contact element formed in particular as a test contact of a test contact arrangement, wherein in said method, for forming a heat transfer surface, a contact head provided with a contact element holding device, with the contact element received in the contact element holding device, is placed between the contact element and a contact material deposit arranged on a contact surface of a contact carrier in the direction of a feeding axis against a contact surface of the connecting material deposit, and, for realizing an at least partial fusing of the connecting material deposit and for producing a materially bonded connection between the contact element and the connecting material deposit, thermal energy is introduced into the connecting material deposit by means of treating the contact element with thermal energy, the temperature T of the contact element being measured while the contact element is being treated and the duration of the treatment being
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: February 9, 2021
    Assignee: PAC TECH—PACKAGING TECHNOLOGIES GMBH
    Inventor: Thorsten Krause
  • Patent number: 10914649
    Abstract: An ionization gauge includes an anode having a rod shape, and a cathode including a cathode plate having a through hole through which the anode extends. A shape of the through hole on a section along an axial direction of the anode includes a concave portion sandwiched between two convex portions.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 9, 2021
    Assignee: CANON ANELVA CORPORATION
    Inventor: Yohsuke Kawasaki
  • Patent number: 10914623
    Abstract: A system (with corresponding a method and computer program product) for sensing wire tampering of a utility service. The system comprises a flow meter configured to produce output pulses indicative of a flow through the utility service, a switching-element receiving the pulses from the flow meter, a diode in parallel with the switching-element, and a processor for recording the flow, and having a first wire and a second wire electrically connected to the switching-element and the diode. The processor is configured to apply a forward voltage to the diode, detect a response at the diode during the application of the forward voltage to the diode, and based on a comparison of a magnitude of the response to at least two of three different electrical states, determine if the detected response is indicative of a) a short between the first wire and the second wire, b) a cut in either of the first wire and the second wire, or c) an untampered wire condition.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: February 9, 2021
    Assignee: SENSUS SPECTRUM, LLC
    Inventors: Adam D. Hansen, Anup Nandwana
  • Patent number: 10901055
    Abstract: A magnetic resonance (MR) system comprises a main magnetic field and an RF power amplifier for generating an RF field in a first RF band, the arrangement further comprising at least one magnetic field probe (2), said magnetic field probe comprising a MR active probe substance, means for pulsed MR excitation of said probe substance (4) in a second RF band and means for receiving a probe MR signal in the second RF band generated by said probe substance. In order to improve performance of the system, the latter comprises means for recording the output signal of the RF power amplifier in said second RF band, and means for subtracting from said probe MR signal an interfering signal contribution contained in said recorded RF amplifier output signal.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 26, 2021
    Inventors: David Brunner, Benjamin Dietrich, Klaas Prussmann