Patents Examined by Melissa Stalder
  • Patent number: 8192704
    Abstract: A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product).
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 5, 2012
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Yong Ho Kim
  • Patent number: 8187561
    Abstract: Processes and systems for recovering promoter-containing compounds, for example, perrhenates, from promoter-containing catalyst substrates, for example, substrates containing precious metals, such as silver, are disclosed. The processes include contacting the substrates with a first solution adapted to remove at least some of the catalyst promoter from the substrates, for example, an oxidizing agent, to produce a second solution containing catalyst promoter, passing the second solution through a porous medium adapted to capture at least some of the catalyst promoter, for example, a ion exchange resin; and passing a third solution, for example, a base solution, through the porous medium to remove at least some of the catalyst promoter from the porous medium and produce a fourth solution containing compounds having a catalyst promoter. Systems adapted to practice these processes are also disclosed.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 29, 2012
    Assignee: Ames Goldsmith Corporation
    Inventors: Michael S. Herman, Michael J. Delsignore, Len D. Spaulding, James E. Phillips, Sr.
  • Patent number: 8182785
    Abstract: Methods for producing singlet oxygen from 1,1-dihydroperoxides are provided herein. In some embodiments, the methods involve base-mediated decomposition of monoactivated derivatives of 1,1-dihydroperoxides. In some embodiments, the methods involve additive-mediated decomposition of 1,1-dihydroperoxides.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: May 22, 2012
    Assignee: Nutech Ventures
    Inventors: Patrick H. Dussault, Prasanta Ghorai
  • Patent number: 8173101
    Abstract: The invention relates to a method for removing heavy metal ions from the lattice of tectosilicates or phyllosilicates, especially from zeolite mineral, particularly clinoptilolite, by exchanging ions with calcium ions. According to the inventive method, the zeolite rock is brought in contact with hydrochloric and ammonium-containing solutions in a chain of exchange reactors such that a large part of the cations of the lattice are replaced with ammonium ions, and the ammonium ions located in the lattice are replaced with calcium in a basic calcium hydroxide solution. The ammonium or ammonia used in the process is conducted in the circuit by binding the same in hydrochloric acid as an ammonium ion from the exchange solutions by conveying anhydrous ammonia and can be fed back to the exchange solution. The ions from the lattice that are exchanged are essentially precipitated as phosphate, carbonate, or hydroxide.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: May 8, 2012
    Inventor: Gaston Glock
  • Patent number: 8173086
    Abstract: A method for recovering base metal values from oxide ore is provided, where the ore includes a first group metal selected from iron, magnesium and aluminum and a second group metal selected from nickel, cobalt and copper. The method includes reducing ore particle size to suit the latter unit operations, favoring contact of the metal elements, contacting the ore with ferric or ferrous chloride, hydrated or anhydrous, to produce a mix of ore and iron(II or III) chloride, subjecting the mixture of the ore and ferric or ferrous chloride to enough energy to decompose the chlorides into hydrochloric acid and a iron oxide, contacting the readily-formed hydrochloric acid with the base metal oxides from the second group, forming their respective chlorides, selectively dissolve the produced base metal chlorides, leaving the metals as oxides and in the solid state, and recovering the dissolved base metal values from aqueous solution.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: May 8, 2012
    Assignee: Vale S.A.
    Inventors: Antonio Clareti Pereira, Tiago Valentim Berni
  • Patent number: 8173827
    Abstract: The present invention relates to a method for preparing iron-containing porous organic-inorganic hybrid materials where the organic compound ligand is bonded to a central metal and has a large surface area and pores of molecular size or nano size, by irradiating microwaves instead of heat treatments such as the conventional electric heating, etc. as the heat source of the hydrothermal or solvothermal synthesis reaction, after reacting a metal or metal salt and organic compound to form crystal nuclei by a predetermined pre-treatment operation in the presence of a solvent. In another aspect, a method of the present invention further comprises the step of purifying the obtained porous organic-inorganic hybrid materials by treating them with inorganic salt. In particular, a method of the present invention is characterized by not using a hydrofluoric acid.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: May 8, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Jong-San Chang, Young Kyu Hwang, Sung Hwa Jhung, Do-Young Hong, You-Kyung Seo, Gerard Ferey, Christian Serre
  • Patent number: 8158089
    Abstract: Particular aspects provide a method for recovering phosphate, comprising: obtaining an effluent or wastewater, etc. having calcium-sequestered phosphate; adding to the effluent or wastewater a calcium chelating or sequestration agent suitable to chelate or sequester Ca++ ions from the calcium-sequestered phosphate to facilitate release of phosphate from the calcium-sequestered phosphate; transferring, facilitated by said Ca++ ion capture and in the presence of sufficient concentrations of NH4+ and Mg2 ions, of the phosphate into struvite (magnesium ammonium phosphate hexahydrate or MgNH4PO4.6H2O), or hydrated magnesium ammonium complex of phosphate; and recovering the struvite, or the formed hydrated magnesium ammonium complex. Preferably, the method further comprises acidification of the effluent or wastewater to facilitate release of Ca++ ions from the calcium-sequestered phosphate and chelation of sequestration of the Ca++ ions by the calcium chelating or sequestration agent.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 17, 2012
    Assignees: Washington State University Research Foundation, Multiform Harvest, Inc.
    Inventors: Tianxi Zhang, Keith E. Bowers, Joseph H. Harrison, Shulin Chen
  • Patent number: 8158100
    Abstract: The present invention relates to a method for the preparation of hydrogen peroxide through a continuous process, extracting hydrogen peroxide produced from reduction and oxidation of a working solution and recycling the oxidized working solution back to the reduction process, wherein the composition of the working solution, i.e. the composition of 2-alkylanthraquinone and 2-tetrahydroalkylanthraquinone, is optimized to increase the solubility of the quinones and to improve the reaction rate. The working solution comprises 2-alkylanthraquinone, 2-tetrahydroalkylanthraquinone and an organic solvent, wherein 65-95 mol % of the alkyl group of 2-alkylanthraquinone and 2-tetrahydroalkylanthraquinone is amyl and the remaining 5-35 mol % of the alkyl group is ethyl, and the molar ratio of 2-alkylanthraquinone to 2-tetrahydroalkylanthraquinone is from 4:6 to 1:9.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 17, 2012
    Assignee: OCI Company Ltd.
    Inventors: Se In Yang, Kyung Keun Yoo, Yong Il Kim, Tae Hee Shin, Deok Yun Kim, Sun Ki Seo, Rae Sung Chung, Do Sun Baik
  • Patent number: 8153087
    Abstract: The present application is directed to a method for the purification of Radium, in particular 226Ra, for target preparation for an essentially pure 225Ac production from available radioactive sources, using an extraction chromatography in order to separate chemically similar elements such as Ba, Sr, and Pb from the desired Ra; wherein said extraction chromatography has an extractant system on the basis of a crown ether. The invention is further related to a method for recycling of 226Ra, for target preparation for 225Ac production from radium sources irradiated with accelerated protons (p,2n), after separation of the produced 225AC. In this method a combination of the above extraction chromatography and a cation exchange chromatography is used. The obtained 226Ra is essentially free of the following chemical contaminants consisting of Ag, Al, As, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn, and Ba.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: April 10, 2012
    Assignee: Actinium Pharmaceuticals Inc.
    Inventors: Eva Kabai, Josue Manuel Moreno Bermudez, Richard Henkelmann, Andreas Turler
  • Patent number: 8137644
    Abstract: The invention relates to a method for the removal of uranium(VI) species from waters by means of weakly basic, polyacrylic-based anion exchangers, said uranium(VI) species being present in the form of uranyl complexes as dissolved uranyl.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: March 20, 2012
    Assignees: ATC, Rohm and Haas Company
    Inventors: Wolfgang Hoell, Gunther Mann
  • Patent number: 8137645
    Abstract: A method of recovering a rare earth constituent from a phosphor is presented. The method can include a number of steps (a) to (d). In step (a), the phosphor is fired with an alkali material under conditions sufficient to decompose the phosphor into a mixture of oxides. A residue containing rare earth oxides is extracted from the mixture in step (b). In step (c), the residue is treated to obtain a solution, which comprises rare earth constituents in salt form. Rare earth constituents are separated from the solution in step (d).
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 20, 2012
    Assignee: General Electric Company
    Inventors: Digamber Gurudas Porob, Alok Mani Srivastava, Prasanth Kumar Nammalwar, Gopi Chandran Ramachandran, Holly Ann Comanzo
  • Patent number: 8124294
    Abstract: Provided is a polymer electrolyte membrane including an inorganic nanoparticle bonded with a proton-conducting group, a solid acid and a proton-conducting polymer. The inorganic nanoparticle bonded with the proton-conducting group may be obtained by reacting a compound including a proton-conducting group with a metal precursor. The polymer electrolyte membrane has significantly enhanced proton conductivity and reduced methanol crossover.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 28, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-gyu Lee, Myung-sup Jung, Jae-jun Lee
  • Patent number: 8110520
    Abstract: A method of preparing carbon-coated metal oxide nano-particles and carbon-coated metal oxide nano-particles prepared with the same method are described. The method includes the following steps at least. A precursor of a polymer is polymerized on metal oxide nano-particles to form polymer-coated metal oxide nano-particles. Then, pyrolysis is conducted to carbonize the polymer coated on the metal oxide nano-particles, so as to form carbon-coated metal oxide nano-particles.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: February 7, 2012
    Assignee: National Tsing Hua University
    Inventors: Chia-Min Yang, Yu-Chuan Hsu, Huang-Ching Lin, Yi-Ting Liao, Chien-Wei Lue
  • Patent number: 8101153
    Abstract: The present invention describes a method for treating residues comprising zinc ferrites and non-ferrous metals selected from among the group made up of lead (Pb), silver (Ag), indium (In), germanium (Ge) and gallium (Ga) or mixtures thereof in the form of oxides and sulfates, comprising the following steps: roasting of the residues in an oxidizing medium at elevated temperature in order to obtain a desulfurized residue, carburizing reduction/smelting of the desulfurized residue in a reducing medium, liquid phase extraction of carburized melt and slag, vapor phase extraction of the non-ferrous metals, followed by oxidation and recovery thereof in solid form.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: January 24, 2012
    Assignee: Paul Wurth S.A.
    Inventors: Jean-Luc Roth, Marie Bontemps
  • Patent number: 8092764
    Abstract: Provided is a method of easily producing easily-filterable and stable scorodite that meets the leaching standard (conformance to Japanese Environmental Agency Notice 13) with excellent reproducibility and without using complex operations, when processing arsenic that is included in non-ferrous smelting intermediates, and particularly when processing arsenic in the form of a sulfide. Scorodite is produced by a leaching step of leaching arsenic from a non-ferrous melting intermediate containing arsenic in the weakly acid region, a solution adjusting step of oxidizing trivalent arsenic to pentavalent arsenic by adding an oxidizing agent to the leaching solution, and a crystallizing step of converting the arsenic in the adjusted solution to scorodite crystals.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: January 10, 2012
    Assignee: Dowa Metals and Mining Co., Ltd.
    Inventors: Mitsuo Abumiya, Yusuke Sato, Hironobu Mikami, Masami Oouchi, Tetsuo Fujita, Masayoshi Matsumoto
  • Patent number: 8088347
    Abstract: Process for recovering copper sulphide and optionally molybdenum sulphide from a copper bearing ore by froth flotation includes crushing said ore, mixing the obtained ground powder with at least a collector and water, aerating the slurry, and removing and concentrating the mineral froth formed at the surface of the bath, wherein the collector comprises a thioglycolic acid derivate having the following formula: wherein R1 is N or O, and R2 is an alkyl group having 2 to 12 carbon atoms.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: January 3, 2012
    Assignee: S.P.C.M. SA
    Inventors: Daniel Canady, Mark Dewald
  • Patent number: 8067329
    Abstract: Boron based catalysts and processes for preparing the catalysts are provided. The catalysts are suitable for the alkoxylation of alcohols using alkylene epoxides.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 29, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Kenneth Gene Moloy
  • Patent number: 8062796
    Abstract: Organic electrolytic solutions are provided. One solution includes a lithium salt, an organic solvent including a first solvent having high permittivity and a second solvent having a low boiling point, and a phosphate compound. By using the phosphate based compound, the organic electrolytic solution and the lithium battery including the organic electrolytic solution are flame resistant and have excellent charge/discharge properties. As a result, the lithium battery is highly stable and reliable and has good charge/discharge efficiency.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: November 22, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-gu Yoon, Seok-gwang Doo, Seung-sik Hwang, Kyu-sung Park, Nina K. Gusarova, Boris A. Trofimov
  • Patent number: 8057959
    Abstract: Provided are an additive to an electrode for a fuel cell that is a proton conductive compound having at least one phosphate group, an electrode for a fuel cell including the same, a method of manufacturing the electrode for a fuel cell, and a fuel cell using the electrode. The additive to an electrode for a fuel cell improves the durability of a fuel cell and reduces the amount of phosphoric acid discharged during operation of the fuel cell by fixing the phosphoric acid. Accordingly, a fuel cell having improved efficiency may be prepared using the additive because of improved proton conductivity and durability.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: November 15, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-jin Lee, Suk-gi Hong, Myung-dong Cho
  • Patent number: 8048192
    Abstract: Provided are methods and systems for generating nanoparticles from an inorganic precursor compound using a hydrothermal process within at least one CSTR or PFR maintained at an elevated temperature and an elevated pressure and a treatment vessel in which this reaction solution can be applied to one or more catalyst substrates. In operation, the reaction solution may be maintained within the CSTR at a substantially constant concentration and within a reaction temperature range for a reaction period sufficient to obtain nanoparticles having a desired average particle size of, for example, less than 10 nm formation and/or deposition. Variations of the basic method and system can provide, for example, the generation of complex particle size distribution profiles, the selective deposition of a multi-modal particle size distribution on a single substrate.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Thomas Pompilio Diaz, Samson Hettiarachchi, Peter Louis Andresen, Young Jin Kim