Patents Examined by Melvin Mayes
  • Patent number: 8163091
    Abstract: The present invention relates to an improved method for isolating ingredients from biological material, in particular from sugar beet (Beta vulgaris).
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: April 24, 2012
    Assignee: Sudzucker Aktiengesellschaft Mannheim
    Inventors: Stefan Frenzel, Thomas Michelberger, Günter Witte
  • Patent number: 8163268
    Abstract: EMM-11 is a novel synthetic crystalline microporous material having a single crystalline phase with a unique 3-dimensional channel system comprising three sets of channels, namely a first set comprising 10-ring channels, and a second set and third set comprising 8-ring channels. EMM-11 has unique T-atom connectivity and X-ray diffraction pattern which identify it as a novel material. EMM-11 may be prepared with an organic structure directing agent, preferably, 3-isopropyl-1-methyl-1H-imidazol-3-ium. EMM-11 may be used in organic compounds conversion and absorptive processes.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: April 24, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, Douglas L. Dorset, Gordon J. Kennedy
  • Patent number: 8163074
    Abstract: Phase change inks comprising a carrier and a colorant of the formula wherein R1, R2, R3, R4, R5, R6, R?, R?, Y, CA+, and A? each, independently of the others are as defined herein.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: April 24, 2012
    Assignee: Xerox Corporation
    Inventor: Jeffrey H. Banning
  • Patent number: 8163441
    Abstract: Separator-electrode assemblies (SEAs) comprise a porous electrode useful as a positive or negative electrode, in a lithium battery and a separator layer applied to this electrode, the separator layer being an inorganic separator layer comprising at least two fractions of metal oxide particles different from each other in their average particle size and/or in the metal, and the electrode having active mass particles are bonded together and to the current collector by inorganic adhesive; and a process for their production.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 24, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Gerhard Hoerpel, Volker Hennige, Christian Hying, Sven Augustin
  • Patent number: 8163867
    Abstract: The complex of the present invention containing an onium salt and a central Lewis acidic metal has a high catalytic activity at a high temperature for the copolymerization of an epoxide and carbon dioxide to produce a high molecular weight poly-carbonate.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 24, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Bun Yeoul Lee, Sujith S., Eun Kyung Noh, Jae Ki Min
  • Patent number: 8163264
    Abstract: An expanded graphite is derived from a graphitic or partially graphitic starting material selected from the group consisting of natural graphite, compressed expanded graphite, partially oxidized graphite and/or graphite fibers having a BET surface area of >30 m2/g. The expanded graphite is obtained by reaction of the starting material with substances capable of intercalation or mixtures of substances capable of intercalation to give a compound designated as an intercalation compound and subsequent expansion in plasma.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 24, 2012
    Assignee: SGL Carbon SE
    Inventors: Martin Christ, Reinhard Mach, Asmus Meyer-Plath, Heinz-Eberhard Maneck
  • Patent number: 8158089
    Abstract: Particular aspects provide a method for recovering phosphate, comprising: obtaining an effluent or wastewater, etc. having calcium-sequestered phosphate; adding to the effluent or wastewater a calcium chelating or sequestration agent suitable to chelate or sequester Ca++ ions from the calcium-sequestered phosphate to facilitate release of phosphate from the calcium-sequestered phosphate; transferring, facilitated by said Ca++ ion capture and in the presence of sufficient concentrations of NH4+ and Mg2 ions, of the phosphate into struvite (magnesium ammonium phosphate hexahydrate or MgNH4PO4.6H2O), or hydrated magnesium ammonium complex of phosphate; and recovering the struvite, or the formed hydrated magnesium ammonium complex. Preferably, the method further comprises acidification of the effluent or wastewater to facilitate release of Ca++ ions from the calcium-sequestered phosphate and chelation of sequestration of the Ca++ ions by the calcium chelating or sequestration agent.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 17, 2012
    Assignees: Washington State University Research Foundation, Multiform Harvest, Inc.
    Inventors: Tianxi Zhang, Keith E. Bowers, Joseph H. Harrison, Shulin Chen
  • Patent number: 8157986
    Abstract: A magnetic nanoparticle complex includes a magnetic nanoparticle; and a ligand associated with the magnetic nanoparticle, the ligand including a functional group capable of combining with an acid component or a conjugate base of the acid component, in an oil. A method for preparing a magnetic nanopartide complex, includes preparing a pre-ligand having at least one amino group and at least one carbamate group or dithiocarbamate group; associating the pre-ligand with a magnetic nanoparticle to form a magnetic nanoparticle-ligand complex; and modifying the ligand to form a modified ligand having a functional group capable of combining with an acid component in an oil or a conjugate base of the acid component.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 17, 2012
    Assignee: Seoul National University Research & Development Business Foundation
    Inventor: Jin-Kyu Lee
  • Patent number: 8158095
    Abstract: Disclosed is a non-thermofusible phenol resin powder having an average particle diameter of not more than 20 ?m and a single particle ratio of not less than 0.7. This non-thermofusible phenol resin powder preferably has a chlorine content of not more than 500 ppm. This non-thermofusible phenol resin powder is useful as an organic filler for sealing materials for semiconductors and adhesives for semiconductors. The non-thermofusible phenol resin powder is also useful as a precursor of functional carbon materials such as a molecular sieve carbon and a carbon electrode material.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 17, 2012
    Assignee: Air Water Inc.
    Inventors: Naoto Yoshinaga, Yoshiharu Wakayama, Satoshi Ibaraki, Jun Shimomura, Yoshimi Murage, Niro Shiomi, Yoshinobu Kodani, Takaomi Ikeda
  • Patent number: 8158547
    Abstract: An absorbent of ZSM-5 zeolite ion-exchanged with copper ion, characterized in that at least 60% or more of the copper sites in the copper ion-exchanged ZSM-5 zeolite are copper (I) sites and preferably at least 70% or more of the copper (I) sites are three-oxygen-coordinated copper (I) sites.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: April 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Akiko Yuasa, Yasushige Kuroda, Mahiko Nagao, Atsushi Itadani
  • Patent number: 8153087
    Abstract: The present application is directed to a method for the purification of Radium, in particular 226Ra, for target preparation for an essentially pure 225Ac production from available radioactive sources, using an extraction chromatography in order to separate chemically similar elements such as Ba, Sr, and Pb from the desired Ra; wherein said extraction chromatography has an extractant system on the basis of a crown ether. The invention is further related to a method for recycling of 226Ra, for target preparation for 225Ac production from radium sources irradiated with accelerated protons (p,2n), after separation of the produced 225AC. In this method a combination of the above extraction chromatography and a cation exchange chromatography is used. The obtained 226Ra is essentially free of the following chemical contaminants consisting of Ag, Al, As, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn, and Ba.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: April 10, 2012
    Assignee: Actinium Pharmaceuticals Inc.
    Inventors: Eva Kabai, Josue Manuel Moreno Bermudez, Richard Henkelmann, Andreas Turler
  • Patent number: 8153544
    Abstract: A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 10, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Karen L. Neal-Hawkins
  • Patent number: 8155509
    Abstract: A device and method for providing a gaseous substance mixture which includes at least one reducing agent and/or at least one reducing agent precursor, includes a reservoir for an aqueous solution which includes at least one reducing agent precursor that can be flow connected to an evaporator chamber, and a device for dosing the aqueous solution in the evaporator chamber. A device can heat the evaporator chamber to a temperature higher than or equal to a critical temperature, in which the aqueous solution is at least partially evaporated. The device and method enable reducing agent to be provided for selective catalytic reduction of nitrogen oxides in the exhaust of an internal combustion engine. Preferably, an evaporator unit is configured as the evaporator chamber and a hydrolysis catalytic converter is disposed outside the exhaust system. As a result, the size of the hydrolysis catalytic converter is reduced, allowing compact construction.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: April 10, 2012
    Assignee: Emitec Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brück, Marc Brugger, Thomas Härig, Peter Hirth, Ulf Klein
  • Patent number: 8153091
    Abstract: To provide a simple highly-pure Xe retrieval method and device with high retrieval efficiency by functionally removing such elements as water, CO2 and FCs from waste gases from semiconductor production processes, such as the plasma etching, that contain low-concentration Xe. For samples containing xenon and fluorocarbon, this invention is characterized by having at least first adsorption means (A1) filled with synthetic zeolite with pore size of 4A or smaller and aluminum oxide, arranged serially, gas separation means (A2) composed of silicone or polyethylene hollow fiber gas separation membrane modules 4, second adsorption means (A3) filled with either activated carbon, synthetic zeolite with pore size of 5A or larger, molecular sieving carbon with pore size of 5A or larger, or a combination of these, and reaction means (A4) filled with calcium compounds as reactant.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 10, 2012
    Assignee: L'Air Liquide Societe Anonyme Pour l'Etude Et l'Exploitation des Procedes Georges Claude
    Inventors: Masahiro Kimoto, Terumasa Koura, Yukio Fukuda, Masaki Narazaki, Taiji Hashimoto, Toru Sakai, Kazuo Yokogi
  • Patent number: 8153094
    Abstract: A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700° C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 10, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Vilas G. Pol, Pappannan Thiyagarajan
  • Patent number: 8153093
    Abstract: To provide a process for producing carbonate particles, capable of efficient, easy formation of carbonate particles which have high crystallinity, less prone to agglomeration and offer orientation birefringence, particularly carbonate particles that are needle- or rod-shaped, and of controlling the particle size. In the process a metal ion source and a carbonate ion source are heated together in a liquid of 55° C. or higher for reaction to produce carbonate particles with an aspect ratio of greater than 1, wherein the metal ion source contains at least one metal ion selected from the group consisting of Sr2+, Ca2+, Ba2+, Zn2+ and Pb2+. The carbonate particles are preferably needle- or rod-shaped, pH of the liquid after heating reaction is preferably 8.20 or more, and in its X-ray diffraction spectrum the full-width at half maximum of the diffraction peak corresponding to (111) plane is preferably less than 0.8°.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 10, 2012
    Assignee: FUJIFILM Corporation
    Inventor: Tetsuo Kawano
  • Patent number: 8148287
    Abstract: The present invention relates to a method for preparing a heterogenised catalyst, comprising grafting a catalyst or catalyst precursor, via click chemistry, to a siliceous mesocellular foam (MCF). The invention also relates to a heterogenised catalyst comprising a catalyst species grafted onto a siliceous mesocellular foam (MCF) via a 1,2,3-triazole.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Jaehong Lim, Su Seong Lee, Siti Nurhanna binte Riduan
  • Patent number: 8148290
    Abstract: Diesel exhaust treatment articles, systems and methods are disclosed. According to one or more embodiments, an oxygen storage component is utilized and degradation of the oxygen storage component is correlated with degradation of the hydrocarbon conversion efficiency of a catalyst in a diesel engine system.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 3, 2012
    Assignee: Basf Corporation
    Inventors: Torsten Wolfgang Mueller, Tilman Wolfram Beutel, Joseph Charles Dettling, Markus Kinne
  • Patent number: 8148291
    Abstract: It is an object of the present invention to provide a catalyst having excellent performance and high mechanical strength for use in the production of methacrylic acid. A method for manufacturing a catalyst comprising essential active components of molybdenum, phosphorus, vanadium, cesium, ammonia, copper, and antimony for use in the production of methacrylic acid, comprising drying a slurry prepared by mixing a compound(s) containing the essential active components with water and then calcining the resulting dry powder and molding the calcined powder.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: April 3, 2012
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Atsushi Sudo, Tatsuhiko Kurakami, Toshitake Kojima, Shigeo Hayashimoto, Yasushi Kobayashi
  • Patent number: 8147790
    Abstract: Embodiments of the invention relate to methods of fabricating polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding by carbon pumping, and PCD and polycrystalline diamond compacts formed by such methods. In an embodiment of a method of fabricating PCD, a plurality of diamond crystals and a metal-solvent catalyst may be provided. The diamond crystals and metal-solvent catalyst may be subjected to a first pressure-temperature condition during which carbon is dissolved in the metal-solvent catalyst. After subjecting the diamond crystals and metal-solvent catalyst to the first pressure-temperature condition, the diamond crystals and metal-solvent catalyst may be subjected to a second pressure-temperature condition at which diamond is stable.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: April 3, 2012
    Assignee: US Synthetic Corporation
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli