Patents Examined by Michael Burkhart
  • Patent number: 9034601
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 19, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus Renerus Jacobus Mattheus Hoogenboom
  • Patent number: 9023616
    Abstract: Disclosed are compositions and methods related to a eukaryote of the order Thraustochytriales and family Thraustochytriaceae which when cultured produce quantities of unsaturated fatty acids, such as omega 3 (n-3) and/or omega 6 (n-6) oils, such as DHA, EPA and DPA, capable of being purified and used as all such compositions are used and more, because of their means of production.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: May 5, 2015
    Assignee: DSM Nutritional Products AG
    Inventors: Helia Radianingtyas, Adam M. Burja, James Colin Barrow
  • Patent number: 9023646
    Abstract: The present invention provides HIV-derived lentivectors which are safe, highly efficient, and very potent for expressing transgenes for human gene therapy, especially, in human hematopoietic progenitor cells as well as in all other blood cell derivatives. The lentiviral vectors comprise a self-inactivating configuration for biosafety and promoters such as the EF1 ? promoter as one example. Additional promoters are also described. The vectors can also comprise additional transcription enhancing elements such as the wood chuck hepatitis virus post-transcriptional regulatory element. These vectors therefore provide useful tools for genetic treatments such as inherited and acquired lympho-hematological disorders, gene-therapies for cancers especially the hematological cancers, as well as for the study of hematopoiesis via lentivector-mediated modification of human HSCs.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 5, 2015
    Assignee: Research Development Foundation
    Inventors: Didier Trono, Patrick Salmon
  • Patent number: 9012181
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 21, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus R. J. M. Hoogenboom
  • Patent number: 9005927
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 14, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus R. J. M. Hoogenboom
  • Patent number: 8999324
    Abstract: The present invention relates to the field of glycosylation engineering of proteins. More particularly, the present invention relates to glycosylation engineering to generate proteins with improved therapeutic properties, including antibodies with increased antibody-dependent cellular cytotoxicity.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 7, 2015
    Assignee: Roche GlycArt AG
    Inventors: Pablo Umaña, Joël Jean-Mairet
  • Patent number: 8980282
    Abstract: Herpes Simplex Viruses are disclosed having single-chain antibodies (scFv) embedded in the viral envelope via fusion with glycoprotein D and with glycoprotein H and L.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: March 17, 2015
    Assignee: Virttu Biologics Limited
    Inventor: Joe Conner
  • Patent number: 8980626
    Abstract: Antibody expression vectors and plasmids can incorporate various antibody gene portions for transcription of the antibody DNA and expression of the antibody in an appropriate host cell. The expression vectors and plasmids have restriction enzyme sites that facilitate ligation of antibody-encoding DNA into the vectors. The vectors incorporate enhancer and promoter sequences that can be varied to interact with transcription factors in the host cell and thereby control transcription of the antibody-encoding DNA. A kit can incorporate these vectors and plasmids.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 17, 2015
    Assignee: Janssen Biotech, Inc.
    Inventors: Jill Carton, Jin Lu, Bernard Scallon, Linda Snyder
  • Patent number: 8975467
    Abstract: The present invention relates to transgenic green ornamental fish, as well as methods of making such fish by in vitro fertilization techniques. Also disclosed are methods of establishing a population of such transgenic fish and methods of providing them to the ornamental fish industry for the purpose of marketing.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Yorktown Technologies, L.P.
    Inventors: Alan Blake, Richard Crockett, Aidas Nasevicius
  • Patent number: 8975071
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention includes relates to administering a genetically modified T cell to express a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 10, 2015
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carl H. June, Bruce L. Levine, David L. Porter, Michael D. Kalos, Michael C. Milone
  • Patent number: 8968724
    Abstract: The invention relates to the use of viral inactivated-plasma cryoprecipitate concentrate (VIPCC) comprising a suitable fibronectin/fibrinogen ratio for treating a spine disease, disorder or condition such as intervertebral disc degeneration.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 3, 2015
    Assignee: Omrix Biopharmaceuticals Ltd.
    Inventors: Edna Bechor, Liliana Bar, Israel Nur
  • Patent number: 8951772
    Abstract: The present invention is related to an adenovirus expressing a first protein which is selected from the group comprising an E1B protein and an E4 protein, prior to a second protein which is selected from the group comprising an E1A protein.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 10, 2015
    Inventor: Per Sonne Holm
  • Patent number: 8951980
    Abstract: This invention generally relates to methods for treating or preventing the symptoms of non-alcoholic fatty liver disease, methods for reducing excessive fat from the liver, methods of improving glycemic control, and methods for treating or preventing liver dysfunction, that comprise administering a therapeutically effective amount of Adenovirus 36 E4orf1 protein or functional variant thereof.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: February 10, 2015
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventor: Nikhil V. Dhurandhar
  • Patent number: 8933048
    Abstract: A method of treating a cardiomyopathy in a subject includes administering to the subject a therapeutically effective amount of an agent that modulates contractile function in myocardial tissue of the subject.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 13, 2015
    Assignee: Case Western Reserve University
    Inventor: Julian E. Stelzer
  • Patent number: 8927256
    Abstract: The present invention demonstrates the utility of carbonic acid amides such as urea or its derivatives, carbamates, carbodiimides & thiocarbamides as nitrogenous supplements in fermentation media for production of recombinant proteins to achieve enhanced bioconversion rates and peptides like insulin and insulin analogues, exendin and enzymes such as lipase using methanol inducible fungal expression systems such as Pichia.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: January 6, 2015
    Assignee: Biocon Limited
    Inventors: Sanjay Tiwari, Mukesh Babuappa Patale, Saurabh Garg, Mayank Kumar Garg, Sulekha Joshi, Chittnalli Ramegowda Naveen Kumar, Bimal Kumar, Anuj Goel, Harish Iyer
  • Patent number: 8916381
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention includes relates to administering a genetically modified T cell to express a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 23, 2014
    Assignee: The Trustees of the University of Pennyslvania
    Inventors: Carl H. June, Bruce L. Levine, David L. Porter, Michael D. Kalos, Michael C. Milone
  • Patent number: 8911974
    Abstract: A plasmid is provided comprising the following functional units: a prokaryotic origin of replication, a marker sequence, two specific recombinase recognition sequences and a multiple cloning site, whereby it comprises a gene coding for a sequence specific recombinase, whereby the units are arranged on the plasmid in such a way that the plasmid is divided into a miniplasmid and a minicircle upon expression of the sequence specific recombinase, said miniplasmid comprising the prokaryotic origin of replication, the marker sequence and the gene for the sequence specific recombinase and said minicircle comprising the multiple cloning site.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: December 16, 2014
    Inventors: Peter Mayrhofer, Gerhard Jechlinger, Edith Jechlinger
  • Patent number: 8911993
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention includes relates to administering a genetically modified T cell to express a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 16, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carl H. June, Bruce L. Levine, David L. Porter, Michael D. Kalos, Michael C. Milone
  • Patent number: 8906682
    Abstract: The present invention provides compositions and methods for treating cancer in a human. The invention includes relates to administering a genetically modified T cell to express a CAR wherein the CAR comprises an antigen binding domain, a transmembrane domain, a costimulatory signaling region, and a CD3 zeta signaling domain.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 9, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Carl H. June, Bruce L. Levine, David L. Porter, Michael D. Kalos, Michael C. Milone
  • Patent number: 8901284
    Abstract: Disclosed are methods, compositions and kits for the isolation of exosomes from biological fluids and tissues. Volume-excluding polymers are used to precipitate exosomes from biological samples thereby allowing exosome isolation by low-speed (benchtop) centrifugation or filtration. Further fractionation of exosomes after precipitation is also described.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 2, 2014
    Assignee: Life Technologies Corporation
    Inventors: Alexander Vlassov, Mu Li, Emily Zeringer, Richard Conrad