Patents Examined by Michael Dignan
  • Patent number: 9077029
    Abstract: A negative active material for a rechargeable lithium battery including a flake powder including a plurality of flakes, each flake including a plurality of silicon atoms and a plurality of oxygen atoms, wherein an oxygen atom amount for each flake ranges from 5 wt % to 36 wt % based on a total amount of silicon atoms and oxygen atoms, each flake having a thickness ranging from 30 nm to 500 nm and a ratio of an average longest dimension to the thickness ranging from 10 to 100.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: July 7, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Toru Inagaki, Naoya Kobayashi, Ki-Jun Kim
  • Patent number: 9048503
    Abstract: A method for manufacturing a cable-type secondary battery includes: preparing a first polarity current collector having a long and thin shape; forming at least two first polarity electrode active material layers on the first polarity current collector to be spaced apart from each other in the longitudinal direction; forming an electrolyte layer to surround the at least two first polarity electrode active material layers; forming at least two second polarity electrode active material layers on the electrolyte layer to be spaced apart from each other at positions corresponding to the first polarity electrode active material layers; forming an electrode assembly by surrounding the second polarity electrode active material layers with a second polarity current collector; surrounding the electrode assembly with a cover member; and bending the electrode assembly and the cover member into a serpentine configuration with the active regions spaced apart from one another.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 2, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Ki-Tae Kim, Heon-Cheol Shin, Hyung-Man Cho, Hye-Ran Jung
  • Patent number: 9034525
    Abstract: Amorphous lithium lanthanum zirconium oxide (LLZO) is formed as an ionically-conductive electrolyte medium. The LLZO comprises by percentage of total number of atoms from about 0.1% to about 50% lithium, from about 0.1% to about 25% lanthanum, from about 0.1% to about 25% zirconium, from about 30% to about 70% oxygen and from 0.0% to about 25% carbon. At least one layer of amorphous LLZO may be formed through a sol-gel process wherein quantities of lanthanum methoxyethoxide, lithium butoxide and zirconium butoxide are dissolved in an alcohol-based solvent to form a mixture which is dispensed into a substantially planar configuration, transitioned through a gel phase, dried and cured to a substantially dry phase.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 19, 2015
    Assignee: Johnson IP Holding, LLC
    Inventors: Davorin Babic, Stanley Jones
  • Patent number: 9029040
    Abstract: A fuel cell stack and a compression system for providing compressive force to a fuel cell stack having first and second ends is provided. The compression system includes asymmetric leaf springs operatively connected to first and second ends of the fuel cell stack. Each leaf spring includes a slot having first and second connector positions. The compression system also includes tension members connected to the leaf springs. The tension members compress the leaf springs to provide a compressive load to the fuel cell stack.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 12, 2015
    Assignee: Intelligent Energy Limited
    Inventor: Russell H. Barton
  • Patent number: 9005783
    Abstract: A secondary battery comprises an electrode assembly including a first electrode, a second electrode, a separator for insulating the first electrode and the second electrode from each other, a first electrode tab extending from the first electrode, a second electrode tab extending from the second electrode, and a pouch including a body and a cover. The body includes a receiving part for accommodating the electrode assembly, and a body sealing part extending from the receiving part. The cover includes a covering part corresponding to the receiving part of the body, and a cover sealing part corresponding to the body sealing part. At least two insulation layers and a conductive are provided at the body and the cover, respectively. The first electrode tab and the second electrode tab are electrically connected to the conductive layers of the body and the cover, respectively.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 14, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Changbum Ahn
  • Patent number: 8999589
    Abstract: A positive electrode active material has an average particle diameter of 4.5 to 15.5 ?m and a specific surface area of 0.13 to 0.80 m2/g. A positive electrode mixture layer contains a silane coupling agent and/or at least one of aluminum, titanium, or zirconium based coupling agent having an alkyl or alkoxy groups having 1 to 18 carbon atoms at a content of 0.003% by mass or more and 5% by mass or less with respect to the mass of the positive electrode active material. The nonaqueous electrolyte contains a fluorinated cyclic carbonate esters at a content of 0.3% by mass or more with respect to the total mass of the nonaqueous electrolyte. Thus the nonaqueous secondary battery in which, when used with a nonaqueous electrolyte containing a fluorinated cyclic carbonate esters, cycle characteristics are good and nail penetration characteristics are superior is provided.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 7, 2015
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Patent number: 8999557
    Abstract: A battery module including a plurality of unit battery cells stacked in a first direction; a pair of end plates spaced from each other in the first direction and accommodating the unit battery cells therebetween; an elastic frame below the unit battery cells, the elastic frame extending in the first direction and the elastic frame having the capability of being elastically biased in a second direction.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: April 7, 2015
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventor: Tae-Yong Kim
  • Patent number: 8999574
    Abstract: A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 7, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, John P. Lemmon, Zhenguo Yang, Yuliang Cao, Xiaolin Li
  • Patent number: 9000713
    Abstract: Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Massachussetts Institute of Technology
    Inventors: Dane A. Boysen, David J. Bradwell, Kai Jiang, Hojong Kim, Luis A. Ortiz, Donald R. Sadoway, Alina A. Tomaszowska, Weifeng Wei, Kangli Wang
  • Patent number: 8993190
    Abstract: A fuel cell unit of a fuel cell contains a first membrane electrode assembly having a frame portion on an outer circumference thereof, a first separator, a second membrane electrode assembly having a frame portion on an outer circumference thereof, a second separator, and a third separator. A plurality of resin pins are formed integrally on the frame portion of the first membrane electrode assembly. The resin pins are integrally inserted into holes in the first separator, holes in the second membrane electrode assembly, holes in the second separator, and holes in the third separator.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 31, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiro Fukuta, Yoshihiro Nakanishi, Kentaro Ishida
  • Patent number: 8980462
    Abstract: A cable-type secondary battery includes an electrode assembly, which has a first polarity current collector having a long and thin shape, at least two first polarity electrode active material layers formed on the first polarity current collector to be spaced apart in the longitudinal direction, an electrolyte layer filled to surround at least two first polarity electrode active material layers, at least two second polarity electrode active material layers formed on the electrolyte layer to be spaced apart at positions corresponding to the first polarity electrode active material layers, the electrode assembly being continuously bent into a serpentine configuration by a space between the first polarity electrode active material layers; a second polarity current collector configured to surround at least one side of the electrode assembly bent into a serpentine configuration; and a cover member configured to surround the second polarity current collector and the electrode assembly.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 17, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Ki-Tae Kim, Heon-Cheol Shin, Hyung-Man Cho, Hye-Ran Jung
  • Patent number: 8951658
    Abstract: A cable-type secondary battery includes an electrode assembly, which has a first polarity current collector having a long and thin shape, at least two first polarity electrode active material layers formed on the first polarity current collector to be spaced apart in the longitudinal direction, an electrolyte layer filled to surround at least two first polarity electrode active material layers, at least two second polarity electrode active material layers formed on the electrolyte layer to be spaced apart at positions corresponding to the first polarity electrode active material layers, and a second polarity current collector configured to surround the outer surfaces of the second polarity electrode active material layers, the electrode assembly being continuously bent into a serpentine configuration by a space between the first polarity electrode active material layers; and a cover member configured to surround the electrode assembly which is continuously bent into a substantially a serpentine configuration.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Ki-Tae Kim, Heon-Cheol Shin, Hyung-Man Cho, Hye-Ran Jung
  • Patent number: 8951653
    Abstract: A battery module includes a plurality of battery cells, a plurality of holders, and a thermistor. Each of at least one of holders includes a thermistor holder. The thermistor supporter includes a pair of thermistor receiving segments, a pair of thermistor engagement segments, and a thermistor cover portion. The sensor casing includes a bias portion and an elastic claw portion. The bias portion is provided to press the sensor against one of the top surface and the bottom surface provided in the at least one of the battery cells by utilizing a reaction force generated by pressing the thermistor cover portion. The elastic claw portion has a width larger than the distance between the pair of thermistor receiving segments when the elastic claw portion is in a free state.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 10, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tomomi Kurita
  • Patent number: 8906540
    Abstract: The invention relates to a biaxially oriented microporous film composed of at least three coextruded layers encompassing an internal cut-off layer and two external layers, wherein all three layers contain a mixture of propylene homopolymer and propylene block copolymer and ?-nucleation agent. The propylene block copolymer I of the external layers has a melting point exceeding 140° C. and the propylene block copolymer II of the internal layer has a melting range starting at a temperature ranging from 50 to 120° C. and the melting point of the propylene block copolymer I is greater than the melting point of the propylene block copolymer II.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 9, 2014
    Assignee: Treofan Germany GmbH & Co. KG
    Inventors: Thilo Mohr, Detlef Busch, Bertram Schmitz, Christian Peters
  • Patent number: 8883338
    Abstract: A dry-battery housing includes an electrode terminal member made of a single wire, a dry-battery housing unit, a flange portion arranged so as to project at first side of the electrode terminal member, a first partition plate projecting along outside for first side of the electrode terminal member, a second partition plate projecting along outside for second of the electrode terminal member, a first fixing plate projecting from the first partition plate toward the second partition plate, a second fixing plate projecting from the second partition plate toward the first partition plate, a flange-root portion including a narrow space portion for allowing insertion and removal of a rim at the first side of the electrode terminal member and an engagement portion arranged between the narrow space portion of the flange-root portion and a border of an opening portion of the dry-battery housing.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: November 11, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Shinji Kobayashi, Kazuma Hojo, Masashi Tanizaki
  • Patent number: 8828600
    Abstract: The present disclosure provides a battery, which includes a case having through holes, electric terminals projecting outward from the case and fixed to the holes, and insulating members interposed between the case and the terminals. A flanged portion standing out from the case, located around the hole is formed, a reinforcing member is fitted to the outer periphery of the flanged portion that reinforces against the outward force applied to the flanged portion, and the terminal and the insulating member are inserted into the flanged portion, and then the flanged portion is press-fitted from the outside of the case for fixing the terminal to the hole. The battery may have a high sealing property at the fitted portion among the case and the terminal.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyasu Kado, Shigeru Takashiro, Shigetaka Nagamatsu, Keigo Yamada, Kaori Ueda, Takahiro Oshima
  • Patent number: 8808892
    Abstract: Battery packs having electrically insulating material between conductive surfaces of electrical components are described herein. In some embodiments, a battery pack includes a battery cell with a first conductive surface, an electrically conductive member with a second conductive surface, and electrically insulating material positioned between the first and second conductive surfaces. The electrically insulating material has at least one passage that enables the first and second conductive surfaces to be electrically connected. For example, the passage in the electrically insulating material may be formed by, during, or as a result of a process in which the first and second conductive surfaces are attached, such as by a welding process that both ablates a portion of the electrically insulating material to form the through passage and that physically joins the first and second conductive surfaces, thereby creating an electrical connection therebetween.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: August 19, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Thomas P. Maxwell, Eric Petterson
  • Patent number: 8802249
    Abstract: Implementations described and claimed herein provide a battery unit having a first plurality of cells oriented in a first direction and a second plurality of cells oriented in a second direction. The first plurality of cells have a corresponding first plurality of terminals with a first polarity, and the second plurality of cells have a corresponding second plurality of terminals having a second polarity that is an opposite polarity of the first polarity. A conducting surface electrically connects the first and second pluralities of terminals and has a plurality of fuses, each fuse associated with one of the second plurality of terminals. Each fuse has an elongated perforation defining an enclosed surface having a resistive aperture. In general, each resistive aperture is oriented relative to resistive apertures of at least one adjacent fuse such that a substantially even current path is provided to each of the second plurality of terminals.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Eetrex, Inc.
    Inventors: Steven Anthony Mayer, Kyle William Butterfield
  • Patent number: 8802283
    Abstract: A fabrication method of a secondary battery having excellent electrolyte impregnating characteristics and excellent productivity without fracture of an electrode plate or separation of an active material is disclosed. The fabrication method includes providing a plurality of first electrode plates and second electrode plates and two separators, attaching the plurality of first electrode plates to portions between the two separators, attaching the plurality of second electrode plates to one of the two separators, winding the separators having the plurality of first and second electrode plates to form a wound electrode assembly, removing curved portions of the outermost separators positioned at exterior sides of the first and second electrode plates to form a stacked electrode assembly and accommodating the stacked electrode assembly in a sheath member.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 12, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Chul Youm
  • Patent number: 8795904
    Abstract: A series of polar and aprotic organic molecules, which, when used as solvents or additives in nonaqueous electrolytes, afford improved performance for electrochemical cells that operate at high voltages. These polar and aprotic solvents or additives may contain at least one unsaturated functionality per molecule. The unsaturated functionality is conjugated with the polar functionality of the molecule. The unsaturated functionality that is either a double or triple bond could be between carbon-carbon, or between carbon-heteroatom, or between hetroatom-heteroatom. Nonaqueous electrolyte solutions are provided comprising one or more lithium salts dissolved in the mixture solvents, which comprises, in all possible ratios, at least one of the polar, aprotic and unsaturated solvent or additives, one or more cyclic carbonic diesters such as ethylene carbonate, and one or more acyclic carbonic diesters such as dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: August 5, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventor: Kang Conrad Xu