Patents Examined by Michael G. Hartley
  • Patent number: 11413360
    Abstract: The present invention relates to a ligand-SIFA-chelator conjugate, comprising, within in a single molecule three separate moieties: (a) one or more ligands which are capable of binding to a disease-relevant target molecule, (b) a silicon-fluoride acceptor (SIFA) moiety which comprises a covalent bond between a silicon atom and a fluorine atom, and (c) one or more chelating groups, optionally containing a chelated nonradioactive or radioactive cation.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: August 16, 2022
    Assignees: Technische Universität München, Technische Universität München—Klinikum Rechts der Isar
    Inventors: Alexander Josef Wurzer, Hans-Jürgen Wester, Matthias Johannes Eiber
  • Patent number: 11406722
    Abstract: Stable perfluorocarbon nanodroplet compositions with properties such as low-boiling points and small particle diameters are provided for improved performance in ultrasound imaging and therapeutic applications. Methods of producing stabilized nanodroplet compositions and methods of using the compositions are further provided to allow for improved performance in ultrasound imaging techniques and/or therapeutic applications.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 9, 2022
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Caroline de Gracia Lux, Jacques Lux, Alexander M. Vezeridis, Robert F. Mattrey
  • Patent number: 11406721
    Abstract: This disclosure provides compositions of metal-binding fluorinated compounds and associated methods for producing cellular labels for tracking cells by magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and related methods.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: August 9, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Roger Y. Tsien, Eric T. Ahrens, Alexander A. Kislukhin
  • Patent number: 11406723
    Abstract: The subject matter disclosed herein relates generally to cancer therapy and to anti-cancer compounds and imaging agents. More specifically, the subject matter disclosed herein relates to agents that target MC1R and their use in the treatment of cancer. Methods of screening for MC1R targeted agents are also disclosed.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: August 9, 2022
    Inventors: David Morse, Robert Gillies, Mark Mclaughlin, Thaddeus Wadas, Hyun Joo Kil, Narges Tafreshi
  • Patent number: 11401262
    Abstract: The present invention relates to new class of dimeric macrocycles capable of chelating paramagnetic metal ions, their chelated complexes with metal ions and the use thereof as contrast agents, particularly suitable for Magnetic Resonance Imaging (MRI) analysis.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: August 2, 2022
    Assignee: BRACCO IMAGING S.P.A.
    Inventors: Valeria Boi, Roberta Napolitano, Luciano Lattuada
  • Patent number: 11400171
    Abstract: Provided herein are examples of metal chelating ligands that have high affinity for manganese. The resultant metal complexes can be used as MRI contrast agents, and can be functionalized with moieties that bind to or cause relaxivity change in the presence of biochemical targets.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 2, 2022
    Assignee: The General Hospital Corporation
    Inventors: Eric M. Gale, Peter Caravan
  • Patent number: 11395857
    Abstract: A compound is provided comprising a melanocortin 1 receptor (MC1R) targeting peptide (MC1RTP), a radiolabeling group, and a linker joining the MC1RTP to the radio labeling group. The MC1RTP is linear or cyclized, and comprises a sequence of Formula I or Formula II: Xaa1-Xaa2a-Xaa3-Xaa4-Xaa5-Xaa6-Xaa7a (I) or Xaa1-Xaa2b-Xaa3-Xaa4-Xaa5-Xaa6-Xaa7b (II). Xaa1 is L-/D-Nle, L-/D-Nle, L-/D-Ala, L-/D-Leu, L-/D-Ile, D-Ile, L-/D-Cys, L-/D-Met, L-/D-Phe, L-/D-Trp, L-/D-Val, L-/D-Nal, L-/D-2-Nal, Gly, L-/D-?-aminobutryic acid, L-/D-norvaline, or L-/D-homonorleucine. Xaa2a and Xaa7b are L-/D-Cys, L-/D-Asp, L-/D-Glu, L-/D-2-Aad, L-/D-3-Aad, L-/D-Pra, L-/D-Hpg, or L-/D-Bpg. Xaa2b and Xaa7a are L-/D-Cys, L-/D-Lys, L-/D-Orn, L-/D-Dab, L-/D-Dap, L-/D-Lys(N3), L-/D-Orn(N3), L-/D-Dab(N3), L-/D-Dap(N3), L-/D-2-(5?-azidopentyl)alanine, or L-/D-2-(6?-azidohexyl)alanine. Xaa3 is L-/D-His, Pro, beta-(1,2,3-triazol-4-yl)-L-alanine, beta-(1,2,3-triazol-4-yl)-D-alanine, 1,2,4-triazole-3-alanine, or 1,2,4-triazole-3-D-alanine.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: July 26, 2022
    Assignee: PROVINCIAL HEALTH SERVICES AUTHORITY
    Inventors: François Bénard, Kuo-Shyan Lin, Chengcheng Zhang, Zhengxing Zhang
  • Patent number: 11389395
    Abstract: The present invention includes a construct that comprises at least one microbubble encapsulated within the aqueous core of a microcapsule. The present invention also includes a pharmaceutical composition comprising a construct comprising at least one microbubble encapsulated within the aqueous core of a microcapsule. The present invention further includes a method of imaging a tissue or organ in a subject, a method of delivering a therapeutic cargo to a tissue or organ in a subject, and a method of treating a disease or disorder in a subject.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 19, 2022
    Assignee: Drexel University
    Inventors: Steven P. Wrenn, Stephen Dicker
  • Patent number: 11389551
    Abstract: There is described a method for preparation of an imaging medium via transfer from a hyperpolarised singlet state that is not parahydrogen, said method comprising the steps of: (i) preparing a system containing: parahydrogen; a magnetisation transfer complex, with a molecular symmetry that allows the creation of a singlet state between spin pairs within it, said complex including a reversibly bound small molecule transference substrate; applying a magnetic field such that hyperpolarisation is transferred into the transfer complex, including the reversibly bound small molecule transference substrate; (ii) introducing a recipient complex capable of binding the small molecule transference substrate, said recipient complex including a recipient substrate, such that the recipient complex and recipient substrate, including the bound transference substrate, is hyperpolarised.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: July 19, 2022
    Inventors: Simon Duckett, Soumya Singha Roy, Kate M. Appleby
  • Patent number: 11389550
    Abstract: Provided is a novel nanoparticle, a contrast agent for magnetic resonance imaging containing the same, and a ligand compound used for production of the nanoparticle. The present invention relates to a nanoparticle including: a metal particle containing iron oxide; and a ligand which is bound to a metal atom on a surface of the metal particle and is represented by formula (3): where m is an integer of 1 to 4, and a broken line represents a coordinate bond with a metal atom on the surface of the metal particle.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 19, 2022
    Assignees: RIKEN, NATIONAL INSTITUTES FOR QUANTUM SCIENCE AND TECHNOLOGY
    Inventors: Daigo Miyajima, Toshiaki Takeuchi, Seunghyun Sim, Takuzo Aida, Ichio Aoki
  • Patent number: 11384106
    Abstract: This disclosure relates to compositions comprising substituted iminodiacetic acid ligands and metal tricarbonyl complexes containing the ligands and derivatives thereof. In certain embodiments, the metal tricarbonyl complexes are used as radioisotope tracers such as renal tracers. In certain embodiments, the metal complexes comprise 99mTc or Re. In certain embodiments, the ligands are substituted with a fluorine, a fluorine-18(F18) radioisotope, or other radionuclide.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 12, 2022
    Assignee: Emory University
    Inventors: Jeffrey Klenc, Malgorzata Lipowska, Andrew Taylor
  • Patent number: 11382991
    Abstract: A molecular probe for labeling myelin includes a fluorescent trans-stilbene derivative.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 12, 2022
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Yanming Wang, Chunying Wu
  • Patent number: 11382987
    Abstract: The invention relates to methods of sonodynamic therapy comprising the co-administration of a microbubble-chemotherapeutic agent complex together with a microbubble-sonosensitiser complex. It further relates to pharmaceutical compositions comprising these complexes and their use in methods of sonodynamic therapy and/or sonodynamic diagnosis. Such methods find particular use in the treatment of cancer, e.g. pancreatic cancer.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: July 12, 2022
    Assignee: University of Ulster
    Inventors: John Callan, Anthony McHale, Eleanor Stride
  • Patent number: 11369700
    Abstract: This invention relates to a Kit formulation to prepare a radioactive, bone-seeking, pharmaceutical drug that has high radiochemical purity (RCP) in a fast, facile and reproducible process. The Kit has at least two vials and a two-part buffer system with instructions on how to make the drug formulation in a radiopharmacy. The drug formulations of this invention can be conveniently and reproducibly prepared with better delivery of the drug to mammals, better radiochemical purity of the formulation for use in treating a mammal having bone pain, one or more calcific tumors or needing bone marrow suppression or bone marrow ablation.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: June 28, 2022
    Assignee: IGL Pharma Inc.
    Inventors: R. Keith Frank, Jaime Simon, Kelli R. Jay
  • Patent number: 11369698
    Abstract: The invention provides a novel class of clearable, tumor-targeting and human protein-based MRI nanoprobes and contrast agents and their compositions, and methods of preparation and use thereof.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: June 28, 2022
    Assignee: University of Massachusetts
    Inventors: Gang Han, Yang Zhao
  • Patent number: 11369702
    Abstract: Disclosed herein are kits and methods for preparing radiopharmaceuticals. The kits and methods of the present disclosure can prepare the radiopharmaceuticals without using a heater and computer monitoring equipment. The kit includes a frozen crystal reaction vial, a reagent vial and a labeling holder, wherein the labeling holder contains a heating bag that can heat up to a high temperature of at least 95° C. by adding an aqueous solution.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 28, 2022
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Ming-Hsin Li, Shih-Wei Lo, Sheng-Nan Lo, Shih-Ying Lee, Su-Jung Chen
  • Patent number: 11364312
    Abstract: A platinum sulfide protein nanoparticle having near-infrared photothermal effect and multi-modal imaging function, a preparation method therefor and an application thereof. The platinum sulfide nanoparticle having near-infrared photothermal effect and multi-modal imaging function is prepared in aqueous phase by means of formulation screening and process limitation. The nanoparticle has an ultra-small particle size and good stability as well as tumor targeting and photothermal effects and integrates functions of near-infrared imaging, CT imaging, and thermal imaging, so as to achieve high sensitivity, high resolution, and precise positioning of tumors, and to produce high-efficiency photothermal effects under the excitation of near-infrared light to kill tumor cells by thermal ablation, thereby achieving the purpose of efficient, safe, visual, and accurate treatment of tumors. The nanoparticle has the potential for further development and clinical application.
    Type: Grant
    Filed: February 6, 2021
    Date of Patent: June 21, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Hong Yang, Huabing Chen, Xue Wang, Hengte Ke, Ming Li, Tao Xu, Miya Zhang
  • Patent number: 11357874
    Abstract: Methods and compositions for treating, diagnosing and staging cancers, in particular overexpressing the Human Epidermal growth factor Receptor 2 protein (HER2+) given rise to in breast, gastric, gastroesophageal, ovarian, pancreatic cancer and brain tumors, which may be metastatic to the brain or other site. More specifically, the invention provides for Targeted Radionuclide Therapy (TRNT) with a compound of the invention having a peptide that targets the HER2+ cells, a second component for combining metals into complexes through a ring structure (DOTA), and a third radioisotope component, Lu-177 and Ga-68, in which embodiments further include a companion diagnostic, and in which embodiments further include anti-integrin precision medicines for cancers expressing ?v?3 and ?v?5 integrins, HER2+, vascular endothelial growth factor, vitronectin, fibronectin, tenascin, reelin, kindlin and talin.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: June 14, 2022
    Inventor: Stanley Satz
  • Patent number: 11357873
    Abstract: The present invention relates to the preparation of a series of chiral DOTA, DO3A, DO2A, DO1A, cyclen and their metal complexes, which display properties superior to those of previous DOTA-based compounds, and hence are potentially valuable as a platform for diagnostic applications. The chiral DOTAs reveal a high abundance of twisted square antiprism (TSA) geometry favoring them to be used as potential MRI contrast agents, whereas their rapid labelling properties at mild conditions make them excellent candidates for use as radiometal chelators.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: June 14, 2022
    Assignee: THE HONG KONG POLYTECHNIC UNIVERSITY
    Inventors: Ga-Lai Law, Lixiong Dai
  • Patent number: 11351275
    Abstract: Provided herein are magnetic resonance imaging (MRI) contrast agents comprising a compound having a structure represented by: Y—X—Z, wherein, X is: Fe(III) or Mn(II), and Y and Z are each independently selected from pyrophosphate and bisphosphonate (e.g., 1-hydroxybisphosphonate), or a pharmaceutically acceptable hydrate and/or salt thereof. Methods of use of the MRI contrast agent are also provided.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 7, 2022
    Assignee: Duke University
    Inventor: Christopher David Lascola