Patents Examined by Michael L Hobbs
  • Patent number: 10845306
    Abstract: A single-wavelength light source is configured to generate an excitation light source. A sample holder that defines an inner cavity is capable of holding a sample and includes a surface transparent to the excitation light source. One or more mounts are attached to at least one of the light source or the sample holder. The mounts are configured to change an incident angle of the excitation light source on the surface. One or more optical components are positioned in a path of a fluorescence emission emitted from the surface and guide the fluorescence emission to a detector. A detector detects an intensity of the fluorescence emission.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: November 24, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ezzat Hegazi, Vincent Cunningham
  • Patent number: 10845307
    Abstract: A single-wavelength light source is configured to generate an excitation light source. A sample holder that defines an inner cavity is capable of holding a sample and includes a surface transparent to the excitation light source. One or more mounts are attached to at least one of the light source or the sample holder. The mounts are configured to change an incident angle of the excitation light source on the surface. One or more optical components are positioned in a path of a fluorescence emission emitted from the surface and guide the fluorescence emission to a detector. A detector detects an intensity of the fluorescence emission.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: November 24, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ezzat Hegazi, Vincent Cunningham
  • Patent number: 10835664
    Abstract: The invention comprises an implantable cell device that includes a membrane defining and enclosing a chamber; a distance body within the chamber for reducing the diffusion distance for a biological active factor to or across the membrane; and a support scaffold within the chamber for increasing the cell support surface area per unit volume of the chamber for distributing cells.
    Type: Grant
    Filed: April 30, 2017
    Date of Patent: November 17, 2020
    Assignee: Gloriana Therapeutics
    Inventors: Lars Ulrik Wahlberg, Jens Tornøe
  • Patent number: 10829788
    Abstract: A multi-stage anaerobic digester is designed to treat a high solids, stackable feedstock. The system may also receive a pumpable feedstock such as a slurry or sludge. In a first stage, the digestate circulates in one direction around a raceway such that the digestate may pass a feed inlet multiple times before leaving the first tank. An optional side stream loop withdraws fibrous material from near the top of the raceway and return digestate with chopped fibers, preferably lower and further along the raceway. An outlet from the raceway located near, but upstream of, the feed inlet discharges partially digested substrate to a second stage, which is operated as a stirred tank reactor. The two stages may be provided in a single tank with an internal wall separating a ring shaped outer portion from a cylindrical inner portion. The digester may be operated in a thermophilic temperature range.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: November 10, 2020
    Assignee: ANAERGIA INC.
    Inventors: Juan Carlos Josse, Christian Friedl, Martin Bayer
  • Patent number: 10827745
    Abstract: The present invention is directed to a vitrification stick for use in the cryopreservation of biological materials, and may include a body having a first portion and a second portion, a specimen end extending from the second portion of the body, and having a cavity defined therein, and a cap including an open end, a closed end, and an aperture, the cap being dimensioned so as to receive at least the specimen end. The cap is positionable relative to the second portion of the body between an open stage and a closed stage, and in the open stage the cavity of the specimen end is exposed by the aperture to an area exterior to the cap.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: November 10, 2020
    Inventor: Lee L. Nemeth
  • Patent number: 10801002
    Abstract: A method of forming a tissue engineered construct, a bioreactor for forming a tissue engineered construct, and a tissue engineered construct itself are disclosed. The disclosed method includes seeding a scaffold with cells to form a tissue construct; locating the tissue construct in a space defined by a tissue construct support element; locating the tissue construct support element within a bioreactor; and operating a load applicator of the bioreactor to apply a cyclical compressive mechanical load to the tissue construct, to stimulate the deposition of tissue matrix in the tissue construct; in which the tissue construct, the tissue construct support element and the load applicator are arranged so that the load applicator can at least initially contact both the tissue construct and the tissue construct support element, so that at least part of a total load generated by the load applicator is borne by the tissue construct support element.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 13, 2020
    Assignees: UNIVERSITY OF LEEDS, XIROS LIMITED
    Inventors: Scott Finlay, Bahaa Botros Seedhom
  • Patent number: 10801006
    Abstract: The present invention relates to a device for obtaining images of bacterial cultures in a dish. The proposed device includes a support for a culture dish to be analyzed surrounded by an annular light emitting source facing an image capturing device and a non-reflective surface which, in conjunction with a reflective surface arranged in the periphery of the support, form a preferably spherical-shaped contrast observation chamber, providing a glare- and reflection-free, uniform tangent illumination of the support.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: October 13, 2020
    Assignee: IUL, S.A.
    Inventor: Vicente Font Santafe
  • Patent number: 10799868
    Abstract: The present disclosure provides a reagent cartridge configured for use in an automated multi-module cell processing environment. The reagent cartridges may include an electroporation device, as well as sample receptacles, reagent receptacles, waste receptacles and the like, and a script for controlling a processor to dispense samples and reagents contained in the receptacles, and to porate cells in the electroporation device. Also described are kits including the cartridges, automated multi-module cell processing instruments including the reagent cartridges and methods of using the reagent cartridges.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: October 13, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Don Masquelier, Phillip Belgrader, Brian Van Hatten, Bruce Chabansky
  • Patent number: 10787683
    Abstract: The present disclosure relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: September 29, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Patent number: 10775336
    Abstract: An electrical probe is disclosed for measuring an electrical response from a biological cell. The electrical probe includes a tungsten microwire having a sharpened tip section, a catalyst layer formed on the sharpened tip section of the tungsten microwire, and an array of nanotube electrodes vertically aligned on the catalyst layer. The catalyst layer includes a catalyst bilayer including a nickel layer over a gold layer, and the nanotube electrodes include a plurality of silicon nanotubes (SiNTs).
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 15, 2020
    Inventors: Mohammad Abdolahad, Ali Saeidi, Milad Gharooni
  • Patent number: 10766034
    Abstract: An LED-driven optical cavity PCR system and method is disclosed for fast, accurate and reliable PCR based diagnostics. An optical cavity comprising two thin light absorbing metal (AU) films is used for uniform light absorption and subsequent photo thermal light-to-heat conversion is employed for PCR thermal cycling.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 8, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Luke P. Lee, Jun Ho Son
  • Patent number: 10759717
    Abstract: A self-regulating compost bin is formed from a temperature-resistant plastic, and is configured to regulate its internal temperature and inform the user when harmful pathogens within the compost are eradicated. The main body of the compost bin is hollow with a lid having a window through which sunlight may enter to heat the compost. The compost bin may also have a controller in communication with a fan. The controller is configured to control an operation of the fan. The controller is also in communication with a transceiver. The controller alerts a user when the interior of the main body remains at a predetermined temperature for a predetermined length of time to ensure the compost is safe for use.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 1, 2020
    Assignee: MEDAL TECHNOLOGIES, LLC
    Inventors: Larry Stearns, Michael Stearns
  • Patent number: 10744505
    Abstract: A microfluidic device for in vitro 3D cell culture experimentation comprises a body in which is provided a cell culture chamber that is at least partly filled with a scaffolding substance for maintaining a cell culture. In the body a fluid path is provided that communicates with the cell culture chamber for directing a fluid stream along the scaffolding substance. The culture chamber above the scaffolding substance opens into an access port which is provided at an outer top surface of the body to provide direct access to the scaffolding substance. The scaffolding substance forms a fluid flow barrier which separates the fluid path from the access port.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 18, 2020
    Assignee: INTECRYPT B.V.
    Inventor: Mikhail Alexandrovich Ponomarenko
  • Patent number: 10736723
    Abstract: The straw includes a tube (11) extending between a first end (16) and a second end (17) and includes a gas-permeable but liquid-impermeable plug (12). The tube (11) is made of a thermochromic material that reversibly changes colour at a pre-set temperature threshold, by virtue of which colour change the tube (11) has a first visual appearance if the temperature thereof is below the preset threshold and a second visual appearance that is different from the first visual appearance if the temperature thereof is above the preset threshold.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: August 11, 2020
    Assignee: IMV TECHNOLOGIES
    Inventors: Eric Schmitt, Jean-Charles Gorges
  • Patent number: 10739260
    Abstract: This optical analyzing device is provided with a light source, a detector, a substrate having a metal film on at least one surface thereof, and an optical element for introducing a light beam from the light source to the substrate and delivering the light beam from the substrate toward the detector. A plurality of sample regions for holding samples are provided on the metal film; and a portion of the light beam from the light source is irradiated to any one of the sample regions, is reflected, at least once, by the surface of the substrate on the opposite side of the side on which the sample regions are provided, and is not irradiated to a sample region other than the aforementioned sample region in the path thereof until the portion of the light beam is delivered by the optical element.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: August 11, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takayuki Obara, Muneo Maeshima, Kazumichi Imai, Yohei Hanazaki
  • Patent number: 10737261
    Abstract: The present disclosure concerns embodiments of reversibly bonded devices that comprise a reversible bonding component. The reversible bonding component is able to exhibit strong adhesive properties so as to couple device components, but upon exposure to an energy source, the strong adhesive properties are weakened. By weakening the adhesive strength of the reversible bonding component, the device can be deconstructed to access internal biological samples for analysis and characterization.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 11, 2020
    Assignee: Triad National Security, LLC
    Inventors: Pulak Nath, Jen-Huang Huang
  • Patent number: 10738327
    Abstract: The present invention relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment. The electroporation device comprises an electroporation cuvette coupled with an adapter or engagement member at the top that is configured for engagement with liquid handling instrumentation, and a “sipper” conduit at the bottom for sample intake and output.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: August 11, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Patent number: 10737271
    Abstract: The present disclosure provides a reagent cartridge configured for use in an automated multi-module cell processing environment.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 11, 2020
    Assignee: Inscripta, Inc.
    Inventors: Brian Van Hatten, Don Masquelier, Phillip Belgrader, Jorge Bernate, Bruce Chabansky
  • Patent number: 10731131
    Abstract: Devices, systems, and methods can be used for the automated production of dendritic cells (DC) from dendritic cell progenitors, such as monocytes obtained from peripheral blood. The invention makes it possible to obtain sufficient quantities of a subject's own DC for use in preparing and characterizing vaccines, for activating and characterizing the activation state of the subject's immune response, and to aid in preventing and/or treating cancer or infectious disease.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 4, 2020
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Shashi K. Murthy, Bradley B. Collier
  • Patent number: 10723993
    Abstract: A cell culture system for the production of cells and cell derived products includes a reusable instrumentation base device incorporating hardware to support cell culture growth. A disposable cultureware module including a cell growth chamber is removably attachable to the instrumentation base device. The base device includes microprocessor control and a pump for circulating cell culture medium through the cell growth chamber. The cultureware module is removably attached to the instrumentation base device. Cells are introduced into the cell growth chamber and a source of medium is fluidly attached to the cultureware module. Operating parameters are programmed into the microprocessor control. The pump is operated to circulate the medium through the cell growth chamber to grow cells or cell products therein. The grown cells or cell products are harvested from the cell growth chamber and the cultureware module is then disposed.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: July 28, 2020
    Assignee: BIOVEST INTERNATIONAL, INC.
    Inventors: Robert J. Wojciechowski, Darrell P. Page, Karl Patrick Bongers, Scott Waniger, Beverly Norris, Mark Hirschel, Thiem Chan Duong Wong, Grant Adams, Martin Peder Crep, Michael J. Gramer