Patents Examined by Michael M. Robinson
  • Patent number: 11773282
    Abstract: The present invention relates generally to using upconverting inks for producing highly-resolved patterns for inter alia, security applications. More specifically, the present invention relates to the use of sols (inks) and printing processes that produce well-defined printed features consisting of polymers impregnated with luminescent upconversion nanocrystals. The patterns printed using such inks and processes may exhibit defined shapes, characters of text, and various other types of images.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 3, 2023
    Assignee: SOUTH DAKOTA BOARD OF REGENTS
    Inventors: Jon Kellar, P. Stanley May, William Cross, Jeevan Meruga, Tyler Blumenthal
  • Patent number: 11772324
    Abstract: Described herein are methods, systems and apparatus (including associated control methods, systems and apparatus), for the production of a three-dimensional object by “bottom up” additive manufacturing, in which a carrier is vertically reciprocated with respect to a build surface, to enhance or speed the refilling of the build region with a solidifiable liquid. In preferred (but not necessarily limiting) embodiments, the three-dimensional object is produced from a liquid interface by continuous liquid interface production (i.e., “CLIP”).
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: October 3, 2023
    Assignee: Carbon, Inc.
    Inventors: Alexander Ermoshkin, David Shirvanyants, Nordstrom Kirk Phelps, Nikita Ermoshkin, Edward T. Samulski, Joseph M. DeSimone
  • Patent number: 11762286
    Abstract: A template manufacturing method includes preparing a structure including a first substrate and a stacked body that is provided on the first substrate, the stacked body including a first lower layer including a first material, a first upper layer provided on the first lower layer including a second material different from the first material, and a first cover layer provided on a first cover region of the first upper layer and including a third material different from the second material. The method further includes forming a first resist layer on a portion of the first cover layer and on a first portion of the first upper layer, and exposing a second portion of the upper layer. The method yet further includes removing the second portion of the first upper layer using the first cover layer and the first resist layer as a mask.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: September 19, 2023
    Assignee: KIOXIA CORPORATION
    Inventor: Shingo Kanamitsu
  • Patent number: 11760021
    Abstract: A system is disclosed for use in additively manufacturing an object. The system may have a reinforcement supply, a matrix supply, and a wetting module configured to separately receive reinforcement from the reinforcement supply and matrix from the matrix supply and to discharge the reinforcement wetted with the matrix. The wetting module may include a body forming an enclosure and having an inlet end configured to receive the reinforcement and an outlet end configured to discharge the reinforcement wetted with the matrix. The wetting module may also include a plurality of nozzles dividing the enclosure into at least a wetting chamber.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: September 19, 2023
    Assignee: Continuous Composites Inc.
    Inventors: Nathan Andrew Stranberg, Andrew John Overby, Andrew Michael Stulc, Stephen Tyler Wilson, Ryan C. Stocket, Brock Adam Jahner
  • Patent number: 11752690
    Abstract: The purpose of the present invention is to provide a resin composition for forming three-dimensionally shaped objects having high dimensional accuracy. In order to achieve the purpose, the resin composition is used in a three-dimensional shaping method wherein either forming a thin layer that comprises a particulate resin composition and selectively irradiating the thin layer with laser light are repeated or melt-extruding a resin composition into a filament shape and forming a layer of the filament-shaped extruded resin composition are repeated, thereby forming a three-dimensionally shaped object. The resin composition has a particulate or filament shape, comprises polysaccharide nanofibers and a resin, and has a content of the polysaccharide nanofibers of 1-70 mass %. In the resin composition, the maximum value of loss modulus at temperatures in the range of (melting temperature)±20° C. is 10-1,000 times the minimum value of loss modulus at temperatures in the range of (melting temperature)±20° C.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: September 12, 2023
    Assignee: KONICA MINOLTA, INC.
    Inventor: Keisuke Mizoguchi
  • Patent number: 11747722
    Abstract: The present invention provides an imprint method that performs a process of forming a pattern of an imprint material on a substrate using a mold, for each of a plurality of shot regions on the substrate, the process including: dispensing the imprint material onto the substrate; moving, to below the mold, the substrate on which the imprint material is dispensed; and supplying, in a moving path of the substrate in the moving, a first gas that promotes filling of the imprint material into a pattern of the mold, wherein in a case where a target shot region to be subjected to the process meets a predetermined condition, supplying a second gas having a lower oxygen concentration than air onto the substrate is additionally executed for the target shot region after the supplying the first gas.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: September 5, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Zenichi Hamaya, Masahiro Tamura, Yoshinari Someya
  • Patent number: 11731329
    Abstract: An insert molding component includes a primary molding section having a concave portion formed in one surface thereof, the concave portion including stepped lower and upper concave portions, an insert component disposed on a bottom surface of the lower concave portion, a heat-insulating component disposed in the upper concave portion above an opening of the lower concave portion in which the insert component is disposed, and a secondary molding section disposed in contact with the one surface of the primary molding section.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: August 22, 2023
    Assignee: CASIO COMPUTER CO., LTD.
    Inventors: Takanori Ishihama, Toshiya Kuno
  • Patent number: 11732151
    Abstract: Systems and methods for producing a reversible hemiaminal or aminal gel composition for use in 3D printing, the method including preparing a liquid precursor composition, the liquid precursor composition operable to remain in a first liquid state at about room temperature, where the liquid precursor composition comprises: an organic amine composition; an aldehyde composition; a polar aprotic organic solvent; and a carbon nanomaterial; heating the liquid precursor composition to transition from the liquid state to a gel state; transitioning the gel state to a second liquid state; and 3D printing a solid carbon nanomaterial object comprising a solid printed gel from the second liquid state with a pre-determined orientation for the carbon nanomaterial.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: August 22, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Peter Boul
  • Patent number: 11724445
    Abstract: A method of making a three-dimensional object by additive manufacturing from a blended resin including (i) at least one light polymerizable first component and, (ii) at least one, or a plurality of, second solidifiable components that are different from said first component, the method including: providing a first resin and a second resin, where the resins produce three-dimensional objects having different mechanical properties from one another when all are produced under the same process conditions; mixing the first and second resins with one another to produce the blended resin, the blended resin producing a three-dimensional object having mechanical properties intermediate between that of objects produced by the first and second resins when all are produced under the same process conditions; and dispensing the blended resin to the build region of an additive manufacturing apparatus; and then optionally but preferably producing a three-dimensional object from the blended resin in the apparatus.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: August 15, 2023
    Assignee: Carbon, Inc.
    Inventors: Jason P. Rolland, Courtney F. Converse, Oshin Nazarian, Matthew Panzer
  • Patent number: 11718020
    Abstract: Described are 3D printing platforms comprising stereolithographic 3D printing devices utilizing a static optical assembly and procedural modeling applications representing 3D scenes as signed distance function. Described are also structures such as bioreactors that can be printed using such platforms, as well as characteristics and used thereof.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: August 8, 2023
    Assignee: STAMM VEGH CORPORATION
    Inventors: Juan Francisco Llamazares Vegh, Ignacio Hector Campanelli, Gaston Oscar Corti, Emiliano Hoss
  • Patent number: 11718080
    Abstract: A coated sheet for use in additive manufacturing includes a base polymer layer formed of a base polymer material and a coating polymer layer formed of a coating polymer material. At least the coating polymer material is susceptible to dielectric heating in response to electromagnetic radiation, thereby promoting fusion between adjacent coated sheets during the additive manufacturing process. Specifically, when electromagnetic radiation is applied to at least an interface area between adjacent coated sheets, the polymer coating layer of each coated sheet melts to diffuse across an interface area, thereby preventing formation of voids. The base polymer material and the coating polymer material also may have similar melting points and compatible solubility parameters to further promote fusion between sheets.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 8, 2023
    Assignee: The Boeing Company
    Inventor: Nishant Sinha
  • Patent number: 11712858
    Abstract: A method of shaping a preform includes: laminating plural dry tape members each including a binder and fiber while partly heat-sealing the dry tape members with the binder to provisionally fasten each dry tape member to an adjacent dry tape member; bending the dry tape members having been provisionally fastened, along a bending line; and heat-sealing the dry tape members having been bent with the binder to manufacture a shaped dry preform. At the laminating, at least one of the followings is satisfied: (i) an amount of heat-sealing with the binder is changed in an area along the bending line, (ii) an amount of heat-sealing with the binder is different between portions adjacent to and on opposite sides of the area along the bending line, or (iii) an amount of heat-sealing with the binder is different between portions adjacent to each other at the bending line as a border.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 1, 2023
    Assignee: SUBARU CORPORATION
    Inventors: Naoyuki Sekine, Yuta Inoue
  • Patent number: 11713395
    Abstract: A polymerizable liquid that can be used for producing three-dimensional objects by methods of additive manufacturing is disclosed. The polymerizable liquid may comprise: (a) a blocked or reactively blocked polyurethane prepolymer; (b) (optional) a reactive diluent; (c) a blocked or reactively blocked curing agent; (d) a photoinitiator; and (e) (optional) a blocked or reactively blocked diisocyanate. The method using such polymerizable liquid to form three-dimensional objects is also described.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: August 1, 2023
    Assignee: LUXCREO (BEIJING) INC.
    Inventors: Guang Zhu, Yisi Lu, Jie Gao, Le Lv
  • Patent number: 11701829
    Abstract: A process for support material removal for 3D printed parts wherein the part is placed in a media filled tank and support removal is optimized in a multi-parameter system through an artificial intelligence process which may include, but is not limited to, the use of historical data, parametric testing data, normal support removal data, and outputs from other support removal AI models to generate optimally efficient use of each parameter in terms of pulse repetition interval (PRI) and cycle time as defined by pulse width (PW). The input parameters may include heat, circulation, ultrasound and chemical reaction, which are used in sequence and/or in parallel, to optimize efficiency of support removal. Sequentially and/or in parallel, heat, pump circulation and ultrasound may vary in application or intensity. Selection of means of agitation depends on monitored feedback from the support removal tank and application of a statistically dynamic rule based system (SDRBS).
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 18, 2023
    Assignee: PostProcess Technologies, Inc.
    Inventor: Daniel Joshua Hutchinson
  • Patent number: 11702367
    Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: July 18, 2023
    Assignee: Desktop Metal, Inc.
    Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
  • Patent number: 11697742
    Abstract: The present invention provides solvent-based high opacity inks and coatings. The high opacity inks and coatings comprise one or more binders, TiO2 pigment, polymeric void hollowsphere particles, and one or more organic solvents. The inks and coatings may also include mica-based pigments and aluminum pigments. The high opacity inks and coatings of the invention are suitable for use on packaging wherein a high opacity ink or coating is needed to, for example, hide undesired visual effects, or to protect the packaged goods.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 11, 2023
    Assignee: Sun Chemical Corporation
    Inventors: Jarol Alberto Osorio Murillo, Hampton Caudle
  • Patent number: 11693308
    Abstract: A molding apparatus for molding a composition on a substrate using a mold includes a moving unit configured to hold and move the substrate and a gaseous matter supplying unit configured to supply gaseous matter. The gaseous matter supplying unit includes a supply port arranged in a periphery of the substrate held by the moving unit, and supplies the gaseous matter from the supply port while the moving unit is moving the substrate after the composite is supplied to the molding area in the periphery of the substrate.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: July 4, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keiji Yamashita
  • Patent number: 11693309
    Abstract: Provided is an imprint apparatus advantageous in terms of throughput. An imprint apparatus which brings an imprint material on a mold substrate into contact with a mold and forms a pattern made of the imprint material includes: a mold holding unit which holds the mold; a substrate holding unit which holds the substrate; a detecting unit which detects the occurrence of abnormality in a holding operation in the mold holding unit or the substrate holding unit and a position of the mold or the substrate; and a controller which performs at least one of the determination concerning whether or not a return process in which a state is returned from a state in which the abnormality of the holding operation has occurred to a normal state is possible and the execution of the return process on the basis of a result of the detection of the detecting unit.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: July 4, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Hiroki Echigo
  • Patent number: 11685121
    Abstract: A method for variable hardness within three-dimensional (3D) printing. Metadata associated with a print object as a 3D printing copy of an original object is received, the metadata includes data indicating a level of hardness of a portion of the print object. During 3D printing set of parameters including a voltage and a duration are applied to the printing material, such that the level of hardness associated with the metadata of the original object is attained. During printing, the level of hardness is measured using an ultrasonic device, and responsive to determining the level of hardness of the portion of the print object differs from the metadata associated with the portion of the original object, the set of parameters for the portion of the print object are adjusted to attain a target level of hardness as indicated by the metadata of the original object.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: June 27, 2023
    Assignee: International Business Machines Corporation
    Inventor: Sarbajit K. Rakshit
  • Patent number: 11685839
    Abstract: A near-infrared curable ink composition on a predetermined substrate that has excellent adhesion to the substrate when irradiated with near-infrared rays and cured, a near-infrared curable film obtained from the near-infrared curable ink composition, and stereolithography using the near-infrared curable ink composition, and contains composite tungsten oxide fine particles as near-infrared absorbing fine particles and uncured thermosetting resin, wherein the composite tungsten oxide fine particles have a XRD peak top intensity ratio value of 0.13 or more based on a XRD peak intensity ratio value of 1 on plane (220) of a silicon powder standard sample (640c produced by NIST).
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 27, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mika Okada, Takeshi Chonan, Hirofumi Tsunematsu