Patents Examined by Michael P. Mooney
  • Patent number: 12044883
    Abstract: To manufacture an optical waveguide including a substrate, a lower cladding layer formed on the substrate, a core layer formed on the lower cladding layer, a sinking prevention layer formed to cover the core layer and the lower cladding layer, and an upper cladding layer formed on the sinking prevention layer, in which the sinking prevention layer is composed of a material having a higher melting point than that of a material composing the lower cladding layer.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: July 23, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuji Fujiwara, Satomi Katayose, Ryoichi Kasahara
  • Patent number: 12044891
    Abstract: A remote radio unit, RRU, has an outer shell housing radio equipment and at least one fiber optical transceiver module. The fiber optical transceiver module comprises, a casing provided with an interface having a transmitter output, and a Transmitter Optical Sub-Assembly, TOSA, arranged within said casing, where said TOSA transmits light through said transmitter output. The fiber optical transceiver module is physically attached to a heat transferring structure adapted to transfer heat generated in said fiber optical transceiver module to a heat sink arranged outside said outer shell. The proposed technology also provides a fiber optical transceiver module comprising a casing provided with an interface having a transmitter output and a TOSA arranged within said casing and adapted to transmit light through said transmitter output, wherein said casing is further provided with thermal pads arranged on the surface of said casing, said thermal pads may connect to a thermal conductor.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 23, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Stefan Dahlfort
  • Patent number: 12044889
    Abstract: The present embodiment discloses a photonic chip module, LiDAR, and a mobile device. The photonic chip module includes a photonic chip and a reflection unit. The photonic chip includes a cladding and multiple first transceiving waveguide modules. The first transceiving waveguide module is embedded in the cladding, and the first emergent end and the first incident end are arranged at intervals along a first preset direction, collectively forming the first transceiving end of each first transceiving waveguide module, with these ends being spaced along a second preset direction. The reflection unit includes multiple reflection modules arranged along the second preset direction. Each reflection module has a first reflection surface. The photonic chip module provided in this embodiment is advantageous for increasing the detection field of view of the LiDAR under the same resolution conditions.
    Type: Grant
    Filed: March 27, 2024
    Date of Patent: July 23, 2024
    Assignee: SUTENG INNOVATION TECHNOLOGY CO., LTD.
    Inventor: Peng Jiang
  • Patent number: 12032211
    Abstract: An optical device configured to be coupled with an optical fiber is described. The optical device includes a waveguide, a low-confinement waveguide, and a low-confinement layer. The waveguide includes a high-confinement waveguide, which has a first index of refraction. The low-confinement waveguide is optically coupled with the high-confinement waveguide. At least a portion of the low-confinement waveguide has a second index of refraction less than the first index of refraction. The low-confinement waveguide has a thickness of at least a mode diameter in a portion of the optical fiber. The low-confinement layer is adjacent to a portion of the low-confinement waveguide. The low-confinement layer has a third index of refraction less than the second index of refraction.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: July 9, 2024
    Assignee: HyperLight Corporation
    Inventors: Christian Reimer, Mian Zhang, Kevin Luke, Prashanta Kharel
  • Patent number: 12019298
    Abstract: The present disclosure relates to features of a telecommunication enclosure. Example features can include mounting plate attachment features, housing latching features, housing hinge features and fiber routing features.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: June 25, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Johan Geens, Eddy Luc Cams, William Alan Carrico, Bart Mattie Claessens, Philippe Coenegracht
  • Patent number: 12019350
    Abstract: An electro-optic device, such as an optical modulator, comprises: a driver for generating a plurality of identical time-synchronized copies of an input electrical signal, and a photonic integrated circuit, including an optical waveguide structure and a plurality of phase-modulating electro-optical modulator segments. Each one of the modulator segments configured to receive a respective one of the plurality of the copies of the input electrical signal. Instead of incorporating a required phase delay between the copies of the input electrical signal into the driver structure, a multi-layer interconnect substrate is provided that includes a plurality of insulating layers alternating with a plurality of conductive layers.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: June 25, 2024
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Juthika Basak, Douglas Gill, Asres Seyoum, Matthew Streshinsky
  • Patent number: 12007605
    Abstract: A polarization-independent, optical circulator is formed in silicon photonics. The polarization-independent, optical circulator uses an optical splitter having two couplers and two waveguides joining the two couplers. One of the two waveguides is thinner than the other to create a large effective index difference between TE and TM modes transmitted through the one waveguide. Polarization rotators, including reciprocal and/or non-reciprocal rotators, are further used to create the optical circulator.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: June 11, 2024
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Wenyi Wang, Changyi Li, Guoliang Li, Murtaza Askari, Yi Wang, John Dallesasse, Stephen B. Krasulick
  • Patent number: 12001054
    Abstract: An output coupler can be used to couple multiple channels of light from a semiconductor waveguide to an optical fiber for wavelength division multiplexing. To couple light of a wide bandwidth (e.g., equal to or greater than 100 nm), two symmetrical gratings on two sides of a Fabry Perot cavity is used. The two symmetrical gratings are optimized to both reflect light for a Fabry Perot resonator and couple light out of the semiconductor waveguide.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: June 4, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Xuetong Zhou, Hon Ki Tsang
  • Patent number: 11994715
    Abstract: A tapered waveguide. In some embodiments, the waveguide has a narrow end and a wide end. A taper angle of the waveguide may be, at each point along the waveguide, less than an adiabatic taper angle by a margin. The margin may be greater at a first point than at a second point, where the adiabatic taper angle is less at the first point than at the second point.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: May 28, 2024
    Assignee: Rockley Photonics Limited
    Inventors: Jin-Hyoung Lee, Andrea Trita
  • Patent number: 11994706
    Abstract: An eyepiece waveguide includes a set of waveguide layers having a world side and a user side. The eyepiece waveguide also includes a first cover plate having a first optical power and disposed adjacent the world side of the set of waveguide layers and a second cover plate having a second optical power and disposed adjacent the user side of the set of waveguide layers.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: May 28, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Chulwoo Oh, Ravi Kumar Komanduri, Vikramjit Singh, Shuqiang Yang, Frank Y. Xu
  • Patent number: 11971577
    Abstract: A device comprises first, second and third elements fabricated on a common substrate. The first element comprises an active waveguide structure comprising: a first portion supporting a first optical mode. The second element comprises a passive waveguide structure supporting a second optical mode. The third element, at least partly butt-coupled to the second portion, comprises an intermediate waveguide structure supporting intermediate optical modes. At least part of the second element is non-linear, supporting frequency conversion. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the first optical mode and one intermediate optical mode. No adiabatic transformation occurs between any intermediate optical mode and the first optical mode. Mutual alignments of the elements are defined using lithographic alignment marks.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 30, 2024
    Assignee: Nexus Photonics, Inc
    Inventors: Minh Tran, Tin Komljenovic
  • Patent number: 11966077
    Abstract: A light emission apparatus includes a laser diode configured to emit a light; a laser driver electrically coupled to the laser diode, the laser driver being configured to drive the laser diode to generate the light; and an optical module arranged to receive the light emitted by the laser diode, the optical module comprising at least one optical element and being configured to adjust the light and emits a transmitting light; wherein the transmitting light emits from the optical module with an illumination angle and the optical module adjusts the light to vary the illumination angle.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 23, 2024
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Chien-Lung Chen, Chieh-Ting Lin, Yu-Yi Hsu, Hui-Wen Chen, Bo-Jiun Chen, Shih-Tai Chuang
  • Patent number: 11960122
    Abstract: A device for optical signal processing includes a first layer, a second layer and a waveguiding layer. A lens is disposed within the first layer and adjacent to a surface of the first layer. The second layer is underneath the first layer and adjacent to another surface of the first layer. The waveguiding layer is located underneath the second layer and configured to waveguide a light beam transmitted in the waveguiding layer. A grating coupler is disposed over the waveguiding layer. The lens is configured to receive, from one of the grating coupler or a light-guiding element, the light beam, and focus the light beam towards another one of the light-guiding element or the grating coupler.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Hsing-Kuo Hsia, Chewn-Pu Jou
  • Patent number: 11953726
    Abstract: An optical device includes a first waveguide extending in a first direction and a second waveguide connected to the first waveguide. The second waveguide includes a first mirror, a second mirror, and an optical waveguide layer. At least either the first waveguide or the second waveguide has one or more gratings in a part of a connection region in which the first mirror, the second mirror, and the first waveguide overlap one another when seen from an angle parallel with a direction perpendicular to a first reflecting surface of the first mirror. The one or more gratings is at a distance that is longer than at least either a thickness of the first mirror or a thickness of the second mirror in the first direction from an end of the first mirror or the second mirror that is in the connection region.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: April 9, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuki Nakamura, Yasuhisa Inada
  • Patent number: 11953730
    Abstract: A semiconductor structure including a semiconductor substrate, a first patterned dielectric layer, a grating coupler and a waveguide is provided. The semiconductor substrate includes an optical reflective layer. The first patterned dielectric layer is disposed on the semiconductor substrate and covers a portion of the optical reflective layer. The grating coupler and the waveguide are disposed on the first patterned dielectric layer, wherein the grating coupler and the waveguide are located over the optical reflective layer.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Wen-Shiang Liao
  • Patent number: 11953800
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 9, 2024
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ajay Mistry, Meisam Bahadori, Alexander Rylyakov, Rafid Sukkar, Matthew Streshinsky
  • Patent number: 11940655
    Abstract: This optical connector includes a ferrule, a plug frame, and an elastic member. The ferrule holds a glass fiber of an optical fiber. The plug frame receives the ferrule. The elastic member holds, with a first length, the ferrule in a first position in the plug frame, or holds, with a second length shorter than the first length, the ferrule in a second position in the plug frame. When the ferrule is in the first position, the ferrule and the plug frame are in contact with each other via the tapered surface, and the pivotal movement of the ferrule to the plug frame is restricted. When the ferrule is in the second position, the ferrule is not in contact with the plug frame and is pivotable to the plug frame, and the ferrule is in a floating state.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: March 26, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tetsu Morishima
  • Patent number: 11940663
    Abstract: An optical device includes a core formed on a substrate, a first source electrode and a second source electrode formed in contact with both side surfaces of the core interposed between the first source electrode and the second source electrode, and a drain electrode formed in contact with an upper surface of the core. The core, the first source electrode, and the second source electrode together form a plasmonic waveguide. The first source electrode and the second source electrode are Schottky coupled to the core.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: March 26, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hidetaka Nishi, Shinji Matsuo
  • Patent number: 11940653
    Abstract: A diffraction optical waveguide is disclosed, which comprises a grating structure formed on a waveguide substrate. The grating structure comprises a plurality of optical unit structures arranged in an array along a plane; the optical unit structure has a first end and a second end in a first direction parallel to the plane, a distance between the two ends along the first direction is a length L of the optical unit structure; it has a maximum width W perpendicular to the first direction in a predetermined section along the first direction, where 0.3L?W?0.7L, and a central position of the predetermined section is at a predetermined distance d from the first end in the first direction, where d<0.5L; and a width gradually decreases from the predetermined section to both ends, so that a centroid of a cross-section of the optical unit structure is closer to the first end.
    Type: Grant
    Filed: May 11, 2023
    Date of Patent: March 26, 2024
    Assignee: JIAXING UPHOTON OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Zhentao Fan, Xingming Zhao, Kehan Tian
  • Patent number: 11934010
    Abstract: There is provided an optical connection structure in which an optical fiber and an optical semiconductor waveguide are easily connected with low loss. The present invention relates to an optical connection structure configured to connect an optical waveguide device and an optical fiber including cores having different refractive indexes, wherein an optical connection component using a planar lightwave circuit is bonded and fixed on an end surface of an input/output waveguide of the optical waveguide device, a value of a refractive index of a core of the planar lightwave circuit is between a value of the refractive index of the core of the optical waveguide device and a value of the refractive index of the core of the optical fiber, and the optical waveguide device and the optical fiber are optically connected via the planar lightwave circuit.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: March 19, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yusuke Muranaka, Kota Shikama, Hidetaka Nishi, Ai Yanagihara