Abstract: A system for calibrating sensors includes at least one computer server configured to be in communication with at least one uncalibrated sensor and at least one calibrated sensor, and a calibration module stored on the server. The calibration module may be configured to receive calibrated sensor data from the at least one calibrated sensor, and output calibration data to the at least one uncalibrated sensor.
Abstract: A defect detector can receive measured data characterizing an operational performance of a population of sets of parallel operating power sources of a power supplier for a power distribution system. The defect detector can employ statistical analysis to detect a potential defect in a subset of the parallel operating power sources of the power supplier based on the measured data. Each of the parallel operating power sources can be configured to provide a given output in response to a given input.
Type:
Grant
Filed:
June 14, 2017
Date of Patent:
June 23, 2020
Assignee:
INVENTUS HOLDINGS, LLC
Inventors:
John F. Granger, Yi Li, Hooman Yousefizadeh, Donville D. Smith, Carmine A. Priore, III
Abstract: A technique and device (12) may be utilized to determine a characteristic of a crystallographic texture of a sample (10) based on a detected ultrasonic waveform. The device may be configured to receive ultrasonic waveform data representative of a reflected ultrasonic waveform that propagated through a sample from an ultrasonic detector (14). The device may select a portion of the ultrasonic waveform data and apply a Fast Fourier Transform to the portion of the ultrasonic waveform data to transform the portion from a time domain to a frequency domain. The device then may identify a dominant frequency (98) of the portion in the frequency domain and determine a characteristic of a crystallographic texture for the portion based on the dominant frequency of the portion.
Type:
Grant
Filed:
February 18, 2011
Date of Patent:
June 23, 2020
Assignee:
Rolls-Royce Corporation
Inventors:
Michael G. Glavicic, Jeffrey A. Gilbert, Jason A. Gilbert
Abstract: The invention relates to a method (100) for monitoring the accuracy of the azimuthal orientation of a handheld optoelectronic measuring device to be determined (110) by means of an electronic magnetic compass, including an automatic ascertainment (120) of an estimated accuracy value by the measuring device based on measured data of the magnetic compass, characterized by a safety check (200), within the scope of which a probability that the estimated accuracy value meets a previously determined (140) accuracy criterion is automatically ascertained (220) by the measuring device, and the ascertained probability is provided (230) to a user as a return value. The invention also relates to a handheld optoelectronic measuring device including an electronic magnetic compass for carrying out the method according to the invention.
Abstract: A battery state detection device detects a battery state and includes: a first permissible current calculating unit configured to calculate a first permissible current of a battery based on a voltage of the battery detected by a voltage detecting unit; a second permissible current calculating unit configured to calculate a second permissible current of the battery without using the voltage of the battery; and a permissible current determining unit configured to determine a permissible current of the battery corresponding to the battery state on the basis of at least one of the first permissible current and the second permissible current.
Abstract: A surveillance platform for the sensing, measuring, monitoring and controlling equipment and environments, such as food storage and retailing environments, data center environments, and other environments in which equipment performance, operating status, and environmental condition monitoring is desirable, is provided. The surveillance platform can facilitate reporting, visualizing, acknowledging, analyzing, calculating, event generating, notifying, trending, and tracking, of operational events occurring within the environment. Such techniques can be used to protect articles such as food articles, medical articles, computing devices and equipment, artifacts, documents, and the like.
Abstract: This disclosure presents methods and systems for deblending blended seismic data obtained during simultaneous shooting acquisition into deblended seismic data gathers. Methods and systems iteratively separate the blended seismic data into the deblended seismic data gathers based on semblance analysis of a residual difference between the blended seismic data and the deblended seismic data gathers. Each deblended seismic data gather is associated with one of the sources and appears to have been obtained without substantial interference from seismic energy produced by other sources.
Abstract: A measuring arrangement is calibrated for determining rotational positions of a rotary device that has a first part and a second part which can be rotated relative to the first part about a rotational axis. Rotational positions of the first part relative to the second part and/or rotational positions of the second part relative to the first part are detected using a plurality of sensors distributed about the rotational axis. A respective measurement signal corresponding to each detected rotational position is generated such that redundant information on the rotational positions of the first part and the second part relative to each other is provided. The redundant information on the rotational position(s) are analyzed such that effects of a translational movement of the first and the second part relative to each other are corrected, the translational movement running transverse to the extension of the rotational axis.
Type:
Grant
Filed:
July 8, 2011
Date of Patent:
June 2, 2020
Assignee:
Carl Zeiss Industrielle Messtechnik GmbH
Inventors:
Thomas Engel, Dominik Seitz, Rainer Sagemueller, Fabian Holzwarth
Abstract: In an embodiment, measurements are simulated of direct normal irradiance, diffuse horizontal and global horizontal irradiance from groups of two or more photovoltaic arrays and/or irradiance sensors which are located in close proximity to each other and which have different tilt and azimuth angles. Irradiance measurements derived from solar power system power measurements are combined with measurements made by irradiance sensors to synthesize an image of ground level global horizontal irradiance which can be used to create a vector describing motion of that image of irradiance in an area of interest. A sequence of these irradiance images can be transformed into a time series from which a motion vector can be derived.
Abstract: A method for determining whether to perform maintenance for an electronic device includes generating a baseline characterization of thermal performance for a heat-generating component of the electronic device at a baseline date. The method also includes generating an assessment characterization of the thermal performance at an assessment date after the baseline date. The method further includes generating a historical trend that includes the baseline characterization and the assessment characterization. Additionally, the method includes determining whether to perform maintenance for the heat-generating component based on the historical trend and a specified maintenance parameter.
Type:
Grant
Filed:
December 27, 2012
Date of Patent:
May 26, 2020
Assignee:
Intel Corporation
Inventors:
Robin A. Steinbrecher, Nishi Ahuja, Sandeep Ahuja
Abstract: A system for determining an orientation of a first device relative to a user includes a first device including a first orientation measuring unit configured to measure an orientation of the first device relative to the earth, a second device configured to be worn by the user on a body part. The second device includes a second orientation measuring unit configured to measure an orientation of the second device relative to the earth. The system also has a processor configured to calculate an orientation of the first device relative to the second device by comparing the measured orientation of the first device relative to the earth with the measured orientation of the second device relative to the earth.
Abstract: A sensor information processing apparatus according to an embodiment of the present invention includes: an obtainment unit configured to obtain sensor information indicating a result of measurement performed by a sensor; a display control unit configured to perform control of displaying on a screen an icon indicating the sensor; and a determination unit configured to determine presence/absence of abnormality regarding the sensor information obtained by the obtainment unit, wherein in a state where the display control unit is performing control of selectively displaying on the screen the icon of the sensor having been designated, and when abnormality has been determined by the determination unit, the display control unit performs control of displaying on the screen a target icon irrespectively of presence/absence of designation thereof, the target icon being an icon of a sensor that corresponds to the sensor information for which abnormality has been determined.
Abstract: Improved techniques and systems are disclosed for determining the components of resistance experienced by a wearer of a wearable device engaged in an activity such as bicycling or running. By monitoring data using the wearable device, improved estimates can be derived for various factors contributing to the resistance experienced by the user in the course of the activity. Using these improved estimates, data sampling rates may be reduced for some or all of the monitored data.
Type:
Grant
Filed:
September 14, 2016
Date of Patent:
May 12, 2020
Assignee:
APPLE INC.
Inventors:
Craig H. Mermel, Alexander Singh Alvarado, Daniel M. Trietsch, Hung A. Pham, Karthik Jayaraman Raghuram, Richard Channing Moore, III
Abstract: Seismic data processing using one or more non-linear stacking enabling detection of weak signals relative to noise levels. The non-linear stacking includes a double phase, a double phase-weighted, a real phasor, a squared real phasor, a phase and an N-th root stack. Microseismic signals as recorded by one or more seismic detectors and transformed by transforming the signal to enhance detection of arrivals. The transforms enable the generation of an image, or map, representative of the likelihood that there was a source of seismic energy occurring at a given point in time at a particular point in space, which may be used, for example, in monitoring operations such as hydraulic fracturing, fluid production, water flooding, steam flooding, gas flooding, and formation compaction.
Type:
Grant
Filed:
June 21, 2013
Date of Patent:
May 5, 2020
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Ali Ozbek, Julian Drew, Anthony Probert, Daniel Gordon Raymer
Abstract: A vibration data collection system performs an integration or differentiation process on incoming digitized vibration data in real time. The system uses a digital Infinite Impulse Response (IIR) filter running at the input data rate to provide the integration or differentiation function. With this approach, the system reduces hardware complexity and data storage requirements. Also, the system provides the ability to directly integrate or differentiate stored time waveforms without resorting to FFT processing methods.
Abstract: A downhole tool orientation determination system to determine a radial orientation of a tool conveyed downhole into a pipe via a carrier and a method of determining a radial orientation of a tool conveyed downhole into a pipe via a carrier are described. The system includes an orientation tool conveyed downhole by the carrier that conveys the tool, and a distributed acoustic sensor (DAS). The DAS includes an optical fiber disposed axially along an outer surface of the pipe; and a processor to determine an orientation of the orientation tool with respect to the optical fiber based on a measurement by the optical fiber at different rotational positions of the orientation tool. The processor determines the radial orientation of the tool with respect to the optical fiber based on the orientation of the orientation tool with respect to the optical fiber.
Type:
Grant
Filed:
September 22, 2014
Date of Patent:
April 28, 2020
Assignee:
BAKER HUGHES, A GE COMPANY, LLC
Inventors:
Daniel Boyd Cooper, Erik N. Lee, Roger Glen Duncan
Abstract: A method for testing a distributed application. The method includes receiving the automation test code and initiating execution of the automation test code. A responsive event provided by at least one distributed application node, in response to execution of the automation test code is detected. One or more messages having a specified routing key are received as the responsive event. A queue for receiving the one or more messages generated on an advanced message queuing protocol message broker. A test context specific binding key having a known entity identifier and the specified routing key is selectively generated to form a bind between the queue and an established exchange. The one or more messages having a payload that selectively indicates the nature of the state change associated with the predetermined distributed event type are received at the queue. The one or more messages are selectively provided to a requesting device having access to the queue.
Abstract: A method for estimating a number of occupants in a region comprises receiving a time series of sensor values detected over a period of time by a motion sensor sensing motion in the region. A spread parameter indicative of the spread of the sensor values is determined. The number of occupants in the region is estimated based on the spread parameter.
Abstract: A system and method for minimizing the standoff effect on an imaging tool in a borehole are provided. The imaging tool may include a sensor assembly for transmitting current in the direction of the formation to obtain complex measurements having a real part and an imaginary part. The real-part measurement may be sensitive to, or affected by, the resistivity of the formation and the standoff of the imaging tool. The imaginary-part measurement may be affected by only to standoff. A computing device may determine a ratio using the imaginary-part measurement and corresponding to change in standoff at various imaging tool azimuths. The ratio may be applied to the real-part measurement to enhance the resolution of image data corresponding to formations adjacent to the wellbore.
Abstract: Provided is a system for helping an operator determine the target ion, collision energy and other analysis conditions. A chromatogram selected by an operator is displayed in a chromatogram display area of an MRM measurement parameter determination window. When the operator selects a point on this chromatogram, the name of a target compound which is registered in an event linked with a range of time including the selected point in time is displayed on a compound name display area. A plurality of mass spectra collected at that point in time are also displayed in a mass spectra display area in a vertically arranged form, using the same scale on the mass axis and the same scale on the intensity axis, with the scales of their mass axes aligned with each other in the vertical direction. The operator can then check whether the selected peak corresponds to the target compound.