Abstract: Dental cement compositions (including two-part compositions), kits, and related methods are used for bonding a dental prosthetic appliance to a tooth. A first part includes an amine activator component and a zinc oxide reactive filler, while a second part includes a polymerization initiator (e.g., benzoyl peroxide) and a polymerizable component having a structure including at least one acrylate or methacrylate group at one end and a carboxylic acid group at another end. A temporary cement composition advantageously exhibits reduced compressive and/or bonding strength relative to permanent cement compositions, which provides sufficient strength to facilitate normal use of the teeth while the provisional appliance is in use, while also facilitating easy removal of the provisional appliance for replacement with a permanent appliance at a later time.
Type:
Grant
Filed:
January 7, 2016
Date of Patent:
January 24, 2017
Assignee:
Ultradent Products, Inc.
Inventors:
Gordon Kennard, Andy T. Kawamoto, Jeff Wagner
Abstract: A medical article having neutralized sulfonic acid groups on its surface, is disclosed. The article has reduced interaction with biological fluids such as insulin, human growth hormone and human serum albumin.
Type:
Grant
Filed:
August 25, 2009
Date of Patent:
January 10, 2017
Assignee:
SABIC Global Technologies, B.V.
Inventors:
Robert R. Gallucci, Jan Henk Kamps, Jon M. Malinoski, Liming Yu
Abstract: The present invention pertains to a process for producing three-dimensional, self-supporting and/or substrate-supported formed pieces or structures on surfaces by means of site-selective solidification of a liquid to pasty, organic or organically modified material within a bath consisting of this material by means of two- or multiphoton polymerization, whereby the material has at least one compound that has both an organic radical polymerizable via two-photon or multiphoton polymerization and a biocompatible, biodegradable or bioresorbable group, and/or wherein the bath material additionally contains groups or radicals, which are available for an inorganic crosslinking or which are already inorganically crosslinked, providing that both an organic radical polymerizable via two-photon or multiphoton polymerization and a biocompatible, biodegradable or bioresorbable group must be contained in the material.
Type:
Grant
Filed:
February 8, 2011
Date of Patent:
January 10, 2017
Assignee:
Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
Inventors:
Ruth Houbertz-Krauss, Matthias Beyer, Joern Probst, Thomas Stichel
Abstract: A poly(aryl ether sulfone) of low polydispersity containing no detectable cyclic polymer byproduct was prepared by melt polymerization without catalyst, solvent, and base. The poly(aryl ether sulfone) can be used without further purification for the manufacture of articles. A melt composition for fabricating an article comprises the poly(aryl ether sulfone) and, optionally, one or more additives.
Type:
Grant
Filed:
May 7, 2014
Date of Patent:
January 3, 2017
Assignee:
International Business Machines Corporation
Inventors:
Daniel J. Coady, Jeannette M. Garcia, James L. Hedrick, Hans W. Horn, Gavin O. Jones
Abstract: Disclosed herein are methods of making polymerizable resins containing a 1,3,5-hexahydro-1,3,5-triazine moiety and dental compositions comprising such novel hydrolytic stable, polymerizable resins derived from 1,3,5-triacryloyl-hexahydro-1,3,5-triazine (TAT).
Abstract: The present invention relates to polymer compositions suitable for 3D printing. The composition comprises 60 to 80 mass % of oligoester acrylate; 10 to 30 mass % of a liquid polyethylene glycol; 7 to 9 mass % of a non-liquid polyethylene glycol; and 0.1 to 1 mass % of a system of photopolymerization initiators. A distinguishing feature of the composition is that after being extruded at an environment temperature of 22° C. with the extrusion rate of 2.5 to 3.5 cm/sec through a nozzle of a hand-held 3D printing device having an output orifice with a diameter in the range of 0.6 to 1.5 mm and after being irradiated after extrusion with a light having a wavelength in the range of 390 to 410 nm by LEDs having a total power of 2 Wt, the composition maintained its shape without a support.
Type:
Grant
Filed:
November 10, 2014
Date of Patent:
December 27, 2016
Assignee:
CREOPOP PTE. LTD.
Inventors:
Anna Shulga, Igor Kovalev, Dmitry Starodubtsev
Abstract: A self-cure, dual-cure or tri-cure polymerizable dental composition is provided with at least one functional chemical. The dental composition is divided into a three-part composition to avoid stability issues caused by degradation and/or loss of function of one component in the extended presence of another component, and the three parts are packaged in a tri-barrel syringe or cartridge delivery system to avoid premature chemical interaction between the functional chemical, redox initiator and/or acid/base.
Abstract: A photopolymerization accelerator composition improving color stability and controlling polymerization shrinkage stress of cured resin and/or the resulting composite paste thereby feature by tertiary twisted biphenyldiamine with the general formula I: R2 and R3 are each independently alkyl having from 1 to 5 carbon atoms; R and R1 are each independently hydrogen or halogen; alkyl alkoxy, or alkylthio having from 1 to 18 carbon atoms; or phenyl and/or substituted phenyl alkoxy, or alkylthio having from 1 to 18 carbon atoms. It can be used in part with conventional photosensitizers and radically polymerizable monomers.
Abstract: The present invention relates to compositions comprising at least one stable, near-monodisperse, non-reactive hydrophilic polymer comprising in said polymer's backbone, a hydrophilic segment having a degree of polymerization of about 10 to about 1000, and a linear silicone segment at least one terminal end of said non-reactive hydrophilic polymer, wherein said silicone segment comprises between about 6 and about 200 siloxy units, and said non-reactive hydrophilic polymer is associated, via the linear silicone block with a silicone hydrogel. The non-reactive hydrophilic polymers may be incorporated into the formulation from which the silicone hydrogel is made or may be contacted with the silicone hydrogel post formation.
Type:
Grant
Filed:
May 4, 2011
Date of Patent:
December 20, 2016
Assignee:
Johnson & Johnson Vision Care, Inc.
Inventors:
Charles Scales, Kunisi Venkatasubban, Shivkumar Mahadevan, Zohra Fadli, Carrie Davis, Brent Matthew Healy
Abstract: The present invention is an unsaturated polyester resin composition comprising an unsaturated polyester (a), a monomer (b) having one polymerizable carbon-carbon double bond, a monomer (c) having two or more of (meth)acrylate groups, a filler (d) having high thermal conductivity, a glass fiber (e), a low profile additive (f), a curing agent (g), and a polymerization inhibitor (h), wherein the ratio by weight of the ingredient (b) to the ingredient (c) is from 50:50 to 75:25 and the unsaturated polyester resin composition comprises 400 to 1400 parts by weight of the ingredient (d) based on the total 100 parts by weight of the ingredients (a), (b), and (c). This unsaturated polyester resin composition has excellent curing properties without losing storage stability which can be used to provide a cured product having a low mold shrinkage ratio and high thermal conductivity.
Type:
Grant
Filed:
December 13, 2012
Date of Patent:
December 13, 2016
Assignees:
SHOWA DENKO K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
Abstract: The present application provides a glass composition comprising 10-50% by weight CaO, at least 15% and less than 50% by weight P2O5, less than 3% by weight Al2O3, less than 10% by weight Li2O, Na2O, and K2O combined, and 0-60% by weight of SrO, MgO, BaO, ZnO, or combinations thereof; dental compositions comprising the glass composition, and methods of making and using such dental compositions.
Type:
Grant
Filed:
January 12, 2015
Date of Patent:
December 13, 2016
Assignee:
3M Innovative Properties Company
Inventors:
Richard P. Rusin, Kevin M. Cummings, Sumita B. Mitra, Paul A. Burgio, Tsi-Zong Tzou, David S. Arney
Abstract: The present invention provides optic portions, intraocular lenses, and polymers for use in manufacturing optic portions and intraocular lenses. The optic portions include a polymer that comprises (a) one or more alkoxyalkyl methacrylate monomers and/or one or more alkoxyalkyl acrylate monomers that are incorporated in the polymer; (b) one or more hydroxyalkyl methacrylate monomers and/or one or more hydroxyalkyl acrylate monomers that are incorporated in the polymer; and (c) optionally, one or more crosslinking agents that are incorporated in the polymer.
Type:
Grant
Filed:
September 15, 2014
Date of Patent:
December 13, 2016
Assignee:
Benz Research and Development Corporation
Abstract: Provided are: an organic/inorganic composite, and a manufacturing method therefor; and a dental material and bone substitute material manufactured using the organic/inorganic composite. The organic/inorganic composite includes: (A) 100 parts by mass of a thermoplastic resin containing as a main component at least one kind selected from a polyarylketone resin and a polysulfone resin; and (B) 60 to 300 parts by mass of an inorganic particle mixture dispersed in the thermoplastic resin, in which the inorganic particle mixture contains inorganic particles each having a particle diameter of from 200 to 700 nm at a content of 25 vol % or more, and inorganic particles each having a particle diameter of from 40 to 100 nm at a content of 10 vol % or more.
Type:
Grant
Filed:
November 20, 2012
Date of Patent:
December 6, 2016
Assignees:
TOKUYAMA DENTAL CORPORATION, NATIONAL IINSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
Inventors:
Jun-ichiro Yamagawa, Hiroshi Shimizu, Yongjin Li
Abstract: Provided is a process for making non-phthalate plasticizers, by acylating an aromatic compound with a succinic anhydride to form a keto-acid, and then esterifying the keto-acid with C4-C13 OXO-alcohols to form a plasticizer compound. The aromatic rings of the aromatic compound may also be optionally hydrogenated.
Type:
Grant
Filed:
December 9, 2013
Date of Patent:
December 6, 2016
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
Jihad Mohammed Dakka, Edmund John Mozeleski, Lisa Saunders Baugh, Karla Schall Colle, Allen David Godwin, Diana S. Smirnova, Jorg Friedrich Wilhelm Weber, Stephen Zushma
Abstract: A single-paste, self-adhesive dental curable composition that has strong self-adhesion to biological hard tissues (such as enamel and dentin of teeth) and good color tone adaptability suitable for use for aesthetic restoration is provided. A dental curable composition contains: an inorganic particle (A) with an average grain size in the range of 0.1 to 50 ?m; an inorganic particle (B) with an average grain size in the range of 0.1 to 50 ?m; a polymerizable monomer (C); and a polymerization catalyst (D). The refractive index na of the inorganic particle (A) and the refractive index nb of the inorganic particle (B) meet the relationship of na>nb. A cured resin material (E), which is obtained by curing a polymerizable composition containing the polymerizable monomer (C) and the polymerization catalyst (D), has a refractive index ne that meets the relationship (1): 0?|na?ne|<0.01?ne?nb?0.05??(1).
Abstract: Disclosed are phospholipid based compositions and implant devices, as well as methods and kits that include such compositions or components thereof. In particular, the present compositions include a polymer component such as a poloxamer or PEG component and a phospholipid component, such as a Phosal. The present compositions may include at least one additional component, such as granules, powder and/or particulates. The present compositions may further include one or more bone graft materials and/or active ingredients. The compositions may be used on their own or incorporated on or in a surgical implant.
Abstract: The present disclosure relates to a kit of parts comprising part A and part B, part A comprising a polymerizable component having an acid group in the molecule, an initiator, part B comprising an activator, and a film former with a molecular weight of at least 1000. The present disclosure also relates to a composition obtainable by mixing the components contained in the kit of parts and to a process for producing the kit of parts comprising the steps of bringing the components contained in part B of the kit in contact with a surface, drying the surface to form a film.
Type:
Grant
Filed:
July 26, 2011
Date of Patent:
November 22, 2016
Assignee:
3M INNOVATIVE PROPERTIES COMPANY
Inventors:
Christoph Thalacker, Karsten Dede, Alexandra Glaser, Thomas Luchterhandt, Markus Watermann
Abstract: The claimed invention provides a novel compound not having been studied before, that is, a diene carboxylate anion that contains a specific structure, and a salt thereof. The claimed invention further provides a diene carboxylate anion and a salt thereof, especially a metal salt thereof, which are easily soluble in general organic solvents, reactive diluents, and resins, may be in a liquid state at normal temperature depending on the structure, and have high polymerizability. Polymerization/curing of these produces a resin to which many ionic bonds and a metal are introduced, providing various properties such as hardness, scratch resistance, anti-fingerprint property, gas-barrier property, water vapor barrier property, oxygen absorption property, ultraviolet protection, infrared protection, color development and coloring, high refractive index, adhesion, various catalytic abilities, fluorescence ability and light-emitting ability, optical amplification, dispersibility, and antistatic properties.
Abstract: A polyimide polymer, polyimide film and polyimide laminate plate including the same are provided. The polyimide polymer includes Formula (I), Formula (II) and Formula (III). In Formula (I), Formula (II) and Formula (III), A is an aromatic group with fluorine, B, B?, and B? are aromatic groups different from one another. B/(B+B?+B?), B?/(B+B?+B?), and B?/(B+B?+B?) are larger than 0. The polyimide film includes a film layer which includes the above polyimide polymer. The film layer optionally includes colorants or inorganic nanoparticles. Therefore, the thermal resistance and the transparency of the polyimide film are improved, and a polyimide film with high thermal resistance and different colors is available. The polyimide solution can also be applied on metal film to form polyimide laminate plate.