Patents Examined by Michael S. Lebentritt
  • Patent number: 7883928
    Abstract: An image sensor and fabricating method thereof are provided. The image sensor can include a color filter on a semiconductor substrate, a microlens on the color filter layer, and a carbon-doped low temperature oxide layer on the microlens.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 8, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Cheon Man Shim
  • Patent number: 7875934
    Abstract: Disclosed is a method of forming a substrate having islands of diamond (or other material, such as diamond-like carbon), as well as integrated circuit devices formed from such a substrate. A diamond island can form part of the thermal solution for an integrated circuit formed on the substrate, and the diamond island can also provide part of a stress engineering solution to improve performance of the integrated circuit. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Rajashree Baskaran, Kramadhati V. Ravi
  • Patent number: 7871881
    Abstract: A method for fabrication of a monolithically integrated SOI substrate capacitor has the steps of: forming an insulating trench, which reaches down to the insulator and surrounds a region of the monocrystalline silicon of a SOI structure, doping the monocrystalline silicon region, forming an insulating, which can be nitride, layer region on a portion of the monocrystalline silicon region, forming a doped silicon layer region on the insulating layer region, and forming an insulating outside sidewall spacer on the monocrystalline silicon region, where the outside sidewall spacer surrounds the doped silicon layer region to provide an isolation between the doped silicon layer region and exposed portions of the monocrystalline silicon region. The monocrystalline silicon region, the insulating layer region, and the doped silicon layer region constitute a lower electrode, a dielectric, and an upper electrode of the capacitor.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 18, 2011
    Assignee: Infineon Technologies AG
    Inventor: Ted Johansson
  • Patent number: 7872303
    Abstract: At least one gate dielectric, a gate electrode, and a gate cap dielectric are formed over at least one channel region of at least one semiconductor fin. A gate spacer is formed on the sidewalls of the gate electrode, exposing end portions of the fin on both sides of the gate electrode. The exposed portions of the semiconductor fin are vertically and laterally etched, thereby reducing the height and width of the at least one semiconductor fin in the end portions. Exposed portions of the insulator layer may also be recessed. A lattice-mismatched semiconductor material is grown on the remaining end portions of the at least one semiconductor fin by selective epitaxy with epitaxial registry with the at least one semiconductor fin. The lattice-mismatched material applies longitudinal stress along the channel of the finFET formed on the at least one semiconductor fin.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Qiqing Christine Ouyang, Dae-Gyu Park, Xinhui Wang
  • Patent number: 7867788
    Abstract: A Spin-Dependent Tunnelling cell comprises a first barrier layer of a first material and a second barrier layer of a second material sandwiched between a first ferromagnetic layer and a second ferromagnetic layer. The first and second barrier layers are formed to a combined thicknesses so that a Tunnelling Magnetoresistance versus voltage characteristic of the cell has a maximum at a non-zero bias voltage.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 11, 2011
    Assignees: Freescale Semiconductor, Inc., Centre National de la Recherché Scientifique (CNRS), STMicroelectronics (Crolles 2) SAS
    Inventors: De Come Buttet, Michel Hehn, Stephane Zoll
  • Patent number: 7868335
    Abstract: A bipolar junction transistor having an emitter, a base, and a collector includes a stack of one or more layer sets adjacent the collector. Each layer set includes a first material having a first band gap, wherein the first material is highly doped, and a second material having a second band gap narrower than the first band gap, wherein the second material is at most lightly doped.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 11, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Patent number: 7863167
    Abstract: Made available is a Group III nitride crystal manufacturing method whereby incidence of cracking in the III-nitride crystal when the III-nitride substrate is removed is kept to a minimum. III nitride crystal manufacturing method provided with: a step of growing, onto one principal face (10m) of a III-nitride substrate (10), III-nitride crystal (20) at least either whose constituent-atom type and ratios, or whose dopant type and concentration, differ from those of the III-nitride substrate (10); and a step of removing the III-nitride substrate (10) by vapor-phase etching.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: January 4, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fumitaka Sato, Seiji Nakahata
  • Patent number: 7863074
    Abstract: A method for forming a thin film photovoltaic device having patterned electrode films includes providing a soda lime glass substrate with an overlying lower electrode layer comprising a molybdenum material. The method further includes subjecting the lower electrode layer with one or more pulses of electromagnetic radiation from a laser source to ablate one or more patterns associated with one or more berm structures from the lower electrode layer. Furthermore, the method includes processing the lower electrode layer comprising the one or more patterns using a mechanical brush device to remove the one or more berm structures followed by treating the lower electrode layer comprising the one or more patterns free from the one or more berm structures. The method further includes forming a layer of photovoltaic material overlying the lower electrode layer and forming a first zinc oxide layer overlying the layer of photovoltaic material.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 4, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 7858405
    Abstract: A process condition evaluation method for a liquid crystal display module (LCM) includes: a first step of obtaining a threshold power measuring pattern, an analysis sample for a cell bonding status in an LCD fabrication process, and obtaining a lower substrate sample by separating an upper substrate from the threshold power measuring pattern; a second step of supplying voltages on a gate pad on the lower substrate sample with sequentially increasing a voltage level by a predetermined unit by using an electrical device, and obtaining a threshold current and a threshold voltage by measuring currents at a drain pad whenever voltage increased by a predetermined unit is applied to the gate pad; and a third step of obtaining threshold power based on the threshold current and the threshold voltage, and thereby evaluating process conditions of the LCM.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 28, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Jeong-Yeop Lee, Hoon Choi, Young Seok Choi, Kwang-Sik Oh
  • Patent number: 7859110
    Abstract: The present invention provides a solder resist material, which can suppress the warpage of a semiconductor package upon exposure to heat or impact even when used in a thin wiring board and meets a demand for size reduction in electronic devices and a higher level of integration, and a wiring board comprising the solder resist material and a semiconductor package. The solder resist material of the present invention can effectively suppress the warpage of a semiconductor package through a fiber base material-containing layer interposed between resin layers. The fiber base material-containing layer is preferably unevenly distributed in the thickness direction of the solder resist material.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Kensuke Nakamura, Hiroshi Hirose
  • Patent number: 7858995
    Abstract: A semiconductor light emitting device includes a substrate, and a light emitting portion that is disposed on the substrate, and includes an active layer formed of a group III nitride semiconductor using a nonpolar plane or a semipolar plane as a growth principal surface, in which side end surfaces of the active layer are specular surfaces.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: December 28, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Satoshi Nakagawa, Hiroki Tsujimura
  • Patent number: 7855098
    Abstract: A technique for altering or repairing the operating state of a semiconductor device comprises field-controlled diffusion of mobile dopant atoms within the metal oxide crystal lattice. When heated (e.g., above 550 K) in the presence of an electric field (e.g., bias to ground of +/?50 V) the dopant atoms are caused to collect to form an ohmic contact, leaving a depletion region. Metal-semiconductor junction devices such as diodes, photo-diodes, photo-detectors, MESFETs, etc. may thereby be fabricated, repaired or modified.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 21, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Oliver Schmidt
  • Patent number: 7855087
    Abstract: This sheet production apparatus comprises a vessel defining a channel configured to hold a melt. The melt is configured to flow from a first point to a second point of the channel. A cooling plate is disposed proximate the melt and is configured to form a sheet on the melt. A spillway is disposed at the second point of the channel. This spillway is configured to separate the sheet from the melt.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: December 21, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Frank Sinclair
  • Patent number: 7855089
    Abstract: A method for manufacture of application specific solar cells includes providing and processing custom design information to determine at least a cell size and a cell shape. The method includes providing a transparent substrate having a back surface region, a front surface region, and one or more grid-line regions overlying the front side surface region. The one or more grid regions provide one or more unit cells having the cell size and the cell shape. The method further includes forming a layered structure including photovoltaic materials overlying the front surface region.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: December 21, 2010
    Assignee: Stion Corporation
    Inventors: Chester A. Farris, III, Albert S. Brown
  • Patent number: 7855118
    Abstract: By providing a substantially non-damaged semiconductor region between a pre-amorphization region and the gate electrode structure, an increase of series resistance at the drain side during the re-crystallization may be reduced, thereby contributing to overall transistor performance, in particular in the linear operating mode. Thus, symmetric and asymmetric transistor architectures may be achieved with enhanced performance without unduly adding to overall process complexity.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 21, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jan Hoentschel, Uwe Griebenow, Vassilios Papageorgiou
  • Patent number: 7851316
    Abstract: A fabrication method of a semiconductor device includes: forming a gate insulating film and a gate electrode on an N type well; forming first source/drain regions by implanting a first element in regions of the N type well on both sides of the gate electrode, the first element being larger than silicon and exhibiting P type conductivity; forming second source/drain regions by implanting a second element in the regions of the N type well on the both sides of the gate electrode, the second element being smaller than silicon and exhibiting P type conductivity; and forming a metal silicide layer on the source/drain regions.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventor: Hiroyuki Kamada
  • Patent number: 7851810
    Abstract: A semiconductor light emitting device includes a multi-layered semiconductor layer having at least a first conductive type cladding layer, an active layer, a second conductive type first cladding layer, an etching stop layer, and a second conductive type second cladding layer on a substrate. An upper section of a ridge groove is formed by an anisotropic etching process, as a first groove in such a way as to have a depth from a surface of the multi-layered semiconductor layer and as not to cross the etching stop layer at the depth. A bottom groove of the ridge groove is formed by an isotropic etching process, as a second groove by performing etching in such a way as to be stopped by the etching stop layer.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: December 14, 2010
    Assignee: Sony Corporation
    Inventors: Mari Chiba, Hisashi Kudo, Shinichi Agatsuma
  • Patent number: 7851260
    Abstract: A method for manufacturing a semiconductor device is disclosed. As a part of the method, one surface of a substrate is molded with resin where the substrate and the resin are heated in a first heating process and maintained in a flat condition. The substrate and the resin are returned to room temperature while being maintained in the flat condition after the first heating process. The resin is cut after the substrate and the resin are returned to room temperature from a surface of the resin that is opposite the surface of the resin where the substrate contacts the resin. The substrate is left intact when the resin is cut. Thereafter, the substrate is separated.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 14, 2010
    Assignee: Spansion LLC
    Inventors: Junji Tanaka, Kouichi Meguro, Yasuhiro Shinma
  • Patent number: 7851916
    Abstract: A method and system is disclosed for better packaging semiconductor devices. In one example, a semiconductor device package comprises a package substrate, at least one die with an orientation of <100> placed on the substrate with electrical connections made between the package substrate and the die, and an underfill fillet attaching the die to the substrate with the underfill fillet reaching less than 60% of a thickness of the die on at least one side thereof.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: December 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Hui Lee, Mickey Ken, Chien-Hsiun Lee, Szu Wei Lu
  • Patent number: 7846760
    Abstract: A method and structure of providing a doped plug to improve the performance of CCD gaps is discussed. A highly-doped region is implemented in a semiconductor, aligned beneath a gap. The plug provides a highly-conductive region at the semiconductor surface, therefore preventing the development of a region where potential is significantly influenced by surface charges.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 7, 2010
    Assignee: Kenet, Inc.
    Inventors: William D. Washkurak, Michael P. Anthony, Gerhard Sollner