Patents Examined by Michail Belyavskyi
  • Patent number: 10555971
    Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to an HLA mismatched recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 11, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Samuel Strober, Robert Lowsky
  • Patent number: 10556016
    Abstract: Described herein are biomimetic Janus particles useful as artificial antigen presenting cells capable of activating T cells in vitro. “Bull's eye” ligand patterns mimicking either the native or reverse organization of the T cell immunological synapse are provided on the surface of nano- or micro-sized particles. Methods for activating T cells in vitro using biomimetic Janus particles described herein are also provided. T cells activated by the biomimetic Janus particles can be used in adoptive immunotherapies for treating cancer, tolerance induction in autoimmune disease, autologous immune enhancement therapy, and viral infection immunotherapy. Also described herein are methods for producing a biomimetic Janus particle.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: February 11, 2020
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Yan Yu
  • Patent number: 10550165
    Abstract: (Objective) An objective of the present invention is to provide therapeutic agents that, in association with stimulation of PDGFR?-positive cells such as bone marrow mesenchymal stem cells, promote their mobilization into blood and accumulation in a damaged tissue, and induce tissue regeneration in a living body. (Means for solution) Multiple peptides were synthesized, and the migration-promoting activity of each peptide was evaluated. As a result, the present inventors successfully identified multiple peptides that have migration-promoting activity on a PDGFR?-positive bone marrow mesenchymal stem cell line (MSC-1). Further, the present inventors confirmed that the identified peptides also have migration-promoting activity on skin fibroblasts, which are PDGFR?-positive cells.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 4, 2020
    Assignees: STEMRIM INC., OSAKA UNIVERSITY
    Inventors: Katsuto Tamai, Takehiko Yamazaki, Tsutomu Kanezaki, Shigeru Sakurai, Yukiko Noguchi, Mayumi Endo, Natsumi Hamabuchi, Kana Naito
  • Patent number: 10537595
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 21, 2020
    Assignee: Iovance Biotherapeutics, Inc.
    Inventors: Seth Wardell, James Bender, Michael T. Lotze
  • Patent number: 10531654
    Abstract: The leading cause of graft failure is the subsequent development of intimal hyperplasia, which represents a response to injury that is thought to involve smooth muscle proliferation, migration, phenotypic modulation, and extracellular matrix (ECM) deposition. Surgical techniques typically employed for vein harvest—stretching the vein, placing the vein in low pH, solutions, and the use of toxic surgical skin markers—are shown here to cause injury. The invention therefore provides for non-toxic surgical markers than also protect against stretch-induced loss of functional viability, along with other additives. Devices and compositions for reducing physical stress or protecting from the effects flowing therefrom, also are provided.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 14, 2020
    Assignees: VANDERBILT UNIVERSITY, THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Colleen M. Brophy, Padmini Komalavilas, Joyce Cheung-Flynn, Kyle M Hocking, Susan S Eagle
  • Patent number: 10517894
    Abstract: The present disclosure provides methods for re-stimulating TIL populations that lead to improved phenotype and increased metabolic health of the TILs and provides methods of assaying for TIL populations to determine suitability for more efficacious infusion after re-stimulation.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: December 31, 2019
    Assignee: Iovance Biotherapeutics, Inc.
    Inventors: Ian Frank, Michael T. Lotze
  • Patent number: 10517896
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 31, 2019
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 10513686
    Abstract: The disclosure provides a method of producing modified stem memory T cells (e.g. CAR-T cells) for administration to a subject as, for example an adoptive cell therapy.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Poseida Therapeutics, Inc.
    Inventors: Eric Ostertag, Devon Shedlock
  • Patent number: 10508150
    Abstract: Primitive or progenitor hematologic cancer cells have been implicated in the early stages and development of leukemia and malignant lymphoproliferative disorders, including acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL). Interleukin-3 receptor alpha chain (IL-3R? or CD123) is strongly expressed on progenitor hematologic cancer cells, but is virtually undetectable on normal bone marrow cells. The present invention provides methods of impairing progenitor hematologic cancer (e.g., leukemia and lymphomic) cells by selectively targeting cells expressing CD123. These methods are useful in the detection and treatment of leukemias and malignant lymphoproliferative disorders. Also provided are compounds useful for selectively binding to CD123 and impairing progenitor hematologic cancer cells. These compounds may include cytotoxic moieties such as, for example, radioisotopes or chemotherapeutics.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: December 17, 2019
    Assignee: University of Kentucky Research Foundation
    Inventor: Craig Jordan
  • Patent number: 10493131
    Abstract: The subject invention provides methods for recruitment of bone marrow-derived cells, including bone marrow-derived endothelial cells (BMDEC), and increasing their function by administration of relaxin. The methods of the invention can be used in, for example, treating conditions amenable to treatment by recruitment of bone marrow-derived cells, such as BMDEC and bone marrow-derived angio-osteogcnic progenitor cell.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: December 3, 2019
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Kirk P. Conrad, Mark S. Segal
  • Patent number: 10465186
    Abstract: A method of screening is provided. In certain embodiments, the method involves a) obtaining the nucleotide sequences of: i. a heavy chain-encoding nucleic acid that encodes the variable domain of a heavy chain of a first antibody of an animal; and ii. a light chain-encoding nucleic acid that encodes the variable domain of a light chain of the first antibody; b) obtaining nucleotide sequences of cDNAs encoding at least a portion of the antibody repertoire of the animal; c) computationally screening the sequences obtained in b) to identify heavy and light chain sequences that are related by lineage to the heavy and light chain sequences of a); and d) testing at least one pair of the heavy and light chain sequences identified in c) to identify a second antibody that binds to the same antigen as the first antibody.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: November 5, 2019
    Assignee: EPITOMICS, INC.
    Inventors: Mark Bushfield, Michael Hadjisavas, Luc Adam
  • Patent number: 10463697
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 5, 2019
    Assignee: IOVANCE BIOTHERAPEUTICS, INC.
    Inventors: Seth Wardell, James Bender, Michael T. Lotze
  • Patent number: 10443035
    Abstract: The invention provides methods and compositions for preparing antibodies and antibody derivatives with reduced core fucosylation.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 15, 2019
    Assignee: Seattle Genetics, Inc.
    Inventors: Stephen C. Alley, Scott C. Jeffrey, Django Sussman, Dennis R. Benjamin, Brian Toki, Patrick J. Burke
  • Patent number: 10441610
    Abstract: Disclosed are methods and compositions of microbead carriers for delivery of cells and other biologically active substances to diseased or damaged tissue in a subject in need thereof.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 15, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Barbara Dale Boyan, Zvi Schwartz, Christopher S. D. Lee, Shirae Kerisha Leslie, Ramsey C. Kinney
  • Patent number: 10428304
    Abstract: It is an object of the present invention to provide a method for easily producing an antigen-specific B cell population comprising IgG-positive B cells specific to a specific antigen. The present invention provides a method for producing a B cell population, comprising culturing B cells, in which the expression of a Bach2 gene has been increased, in the presence of a means for acting on CD40 and/or a BAFF receptor.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 1, 2019
    Assignees: TOKYO UNIVERSITY OF SCIENCE FOUNDATION, KANEKA CORPORATION
    Inventors: Daisuke Kitamura, Tomoyuki Nakaishi
  • Patent number: 10426795
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: October 1, 2019
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 10428312
    Abstract: An antibody that binds a glycosylated protein is disclosed, wherein the glycosylation comprises the glycan motif Fuc?1-2Gal?1-3GlcNAc1-3Gal?1 or Fuc?1-2Gal?1-3GlcNAc. Antibodies that are cytotoxic against undifferentiated pluripotent cells are also disclosed.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: October 1, 2019
    Assignee: Agency for Science, Technology and Research
    Inventors: Boon Hwa Andre Choo, Jiyun Zheng
  • Patent number: 10420801
    Abstract: A method for suppressing an immune response is provided. The method involves administration of isolated lymphoid tissue-derived suppressive stromal cells (LSSC) to a subject in need of such treatment in an amount effective to suppress the immune response in the subject. The invention also involves a method to isolate LSSC by digesting lymphoid tissue fragments using a combination of an enzyme mix and agitation and then collecting the LSSC. Pharmaceutical preparations comprising LSSC are also provided.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 24, 2019
    Assignees: The General Hospital Corporation, Dana-Farber Cancer Institute, Inc.
    Inventors: Anne Fletcher, Shannon J. Turley, Biju Parekkadan
  • Patent number: 10420799
    Abstract: The present invention provides improved and/or shortened methods for expanding TILs and producing therapeutic populations of TILs, including novel methods for expanding TIL populations in a closed system that lead to improved efficacy, improved phenotype, and increased metabolic health of the TILs in a shorter time period, while allowing for reduced microbial contamination as well as decreased costs. Such TILs find use in therapeutic treatment regimens.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: September 24, 2019
    Assignee: IOVANCE BIOTHERAPEUTICS, INC.
    Inventors: Seth Wardell, James Bender, Michael T. Lotze
  • Patent number: 10421946
    Abstract: Mesenchymal precursors cells have been isolated from perivascular niches from a range of tissues utilizing a perivascular marker. A new mesenchymal precursor cell phenotype is described characterized by the presence of the perivascular marker 3G5, and preferably also alpha smooth muscle actin together with early developmental markers such as MUC 18, VCAM-1 and STRO-1bri. The perivascular mesenchymal precursor cell is multipotential and is shown to form, vascular tissue, as well as bone marrow dentin and pulp. A method of enriching using cell sorting based on these markers is also described.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: September 24, 2019
    Assignee: MESOBLAST, INC.
    Inventors: Stan Gronthos, Andrew Zannettino, Songtao Shi